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ABSTRACT

This dissertation contains two essays. The first essay concerns how to build
a tracking portfolio of stocks whose return of investment mimics that of a chosen
investment target. Statistically, this task can be accomplished by selecting an
optimal model from constrained linear models. To develop an automatic procedure
for building an optimal tracking portfolio, we extend the Generalized Information Cri-
terion (GIC) to constrained linear models either with independently and identically
distributed random errors or with dependent errors that follow a stationary Gaussian
process. The asymptotic validity of the extended GIC is established. Simulation
results show that the relative frequency of selecting the optimal constrained linear
model by the GIC is close to one in finite samples. We apply the GIC based procedure
for building an optimal tracking portfolio to the problem of measuring the long-term
impact of a corporate event on stock returns and demonstrate empirically that it
outperforms two other competing methods.

The second essay concerns how corporations organize their risk management
program. We set up a theoretical framework to analyze the problem of designing a
risk management program for multidivisional corporations. Our analysis shows that
risk management programs currently existing in large corporations are not optimal.
We propose a new risk management program in which the corporate headquarters
organizes an internal market for divisions to trade state-contingent claims among

themselves. We show that this new program is better than existing ones.

viil
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CHAPTER 1

BUILDING TRACKING PORTFOLIOS BASED
ON A GENERALIZED INFORMATION
CRITERION

1.1 Introduction

In a number of financial research studies, the essential task boils down to building
a tracking portfolio of stocks whose return on investment mimics that of a chosen

investment target. The following are two typical examples of such studies.

Example 1.1 Index Fund. The sole business of an index fund is to maintain a
portfolio of individual stocks such that percentage changes in the value of the portfolio
are approximately equal to those of the chosen index. Success of an index fund
depends on how closely its portfolio mimics the index. An easy way to track the
index is to buy and hold all constituent stocks of the index in the same proportions
as they compose the index. It is the easy approach that every index fund manager
would like to take. However, managers of open-end index funds are frequently forced
to buy or sell stocks as investors deposit or withdraw their money. They simply can
not constantly hold the same stocks in the same proportion. When they have to
adjust their portfolio, they would like to make their new portfolio be one that can

closely track the index.

Example 1.2 Long-Term Impact of a Corporate Event on Stock Returns. Such

studies focus on the effect of a specific corporate event on return of investment in

1
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the event firm’s stock over a time span of several years after the event has happened.
A great interest in learning the long-term impact of corporate actions has recently
arisen among finance researchers and generated a considerable literature that is still
growing. See Fama (1998) for a summary of the literature and references therein.
Since the observed post-event return of the event firm’s stock has been influenced
by the event, we do not know what the status quo return would be if the event had
not happened. But in order to learn the event’s impact, we have to compare the
observed post-event return against the unobservable status quo return. One way to
estimate the status quo return is to build a portfolio of other stocks whose return has
moved in the same way as the event firm’s return before the event happened and to
use the observed post-event return of the portfolio as an estimate. Once we have a
pre event tracking portfolio, the difference between the observed post-event return

of the event firm and that of the tracking portfolio is a measure of the event’s effect.

In each of the two examples, a tracking portfolio is to be built given a desired
target and a group of other stocks. In fact, every nonempty subset of these stocks
can form a portfolio that may track the target well. There are as many possible
tracking portfolios as the number of nonempty subsets of these stocks. Among all
possible portfolios, an ideal tracking portfolio would be such that its return is equal
to the target’s return in every month. (We use month as the time unit for measuring
investment return in this paper.) In reality, any portfolio will have returns different
from those of the target. An optimal, though not ideal, tracking portfolio will be the
one whose returns are on average closest to the target’s returns.

Since the return on a tracking portfolio is a weighted sum of returns on all stocks
in the portfolio, building a tracking portfolio for one nonempty subset of stocks
is equivalent to fitting a constrained linear model with the target’s return as the
response variable and returns on stocks in the subset as the covariates. The linear

model is constrained in that all coefficients in the model sum up to one. This

2
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is because the coefficient of each covariate is the proportion of investment on the
corresponding stock to the total investment on the tracking portfolio and the sum of
all coefficients accounts for 100 percent of the total investment.

Because of the correspondence of each possible portfolio and a constrained linear
model, the task of finding the optimal tracking portfolio can be accomplished
by selecting an optimal constrained linear model. In this paper, we develop
an automatic procedure to find an optimal tracking portfolio, based on a model
selection criterion known as the Generalized Information Criterion (GIC). There
is considerable literature on the problem of selecting variables in the context of
unconstrained linear models; see review papers by Hocking (1976) and Thompson
(1978a, b) for early contributions. Miller (1990) gives an excellent and comprehensive
treatment of variable selection methods prior to 1990, and George (2000) reviews the
key developments in the last decade. The Generalized Information Criterion (GIC)
we use is proposed by Rao and Wu (1989) and is a generalization of the well known
Akaike’s Information Criterion (AIC, Akaike (1973)) and the Bayesian Information
Criterion (BIC, Schwartz (1978)). Nishii (1984) studies asymptotic properties of
several selection criteria, one of which is asymptotically equivalent to the one by
Rao and Wu (1989). Nishii (1984), Rao and Wu (1989), and Pétscher (1989) prove
the consistency of the GIC or its asymptotic equivalents for unconstrained linear
models under the assumption that there exists a finite-dimensional true model.
However, they made different assumptions on the random errors in the linear
models. Nishii (1984) and Rao and Wu (1989) assume i.i.d. random errors while
Potscher (1989) assumes that the errors follow a martingale difference sequence.
Shao (1997) proposes using two criteria to evaluate asymptotic validity of a model
selection procedure: consistency and asymptotic loss efficiency. (See Section 1.3 for
definitions of asymptotical loss efficiency and consistency.) He shows that the GIC is

asymptotically loss efficient regardless the existence of a true model and consistent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



if a true model exists. He deals with only unconstrained linear models and assume
that the random errors are i.i.d.

In this paper, we extend the Generalized Information Criterion (GIC) first to
constrained linear models with i.i.d. random errors and then to constrained linear
models with errors following a stationary Gaussian process. Since there is no
guarantee that returns on the target are completely determined by returns on any
subset of stocks, we do not take the existence of a true model for granted. Following
Shao (1997), we study both asymptotic loss efficiency and consistency of the extended
GIC. We prove that, under certain conditions, the extended GIC is asymptotically
loss efficient regardless the existence of a true model and consistent if a true model
exists.

As an application, we apply the GIC to build an optimal tracking portfolio for
the purpose of measuring the long-term impact of a corporate event on stock returns.
We compare performance of the GIC based procedure against two other competing
methods empirically and find that the GIC based procedure gives the best results.

The rest of the paper is organized as follows. In Section 1.2, we formalize
a statistical model for building an optimal tracking portfolio. In Section 1.3,
we introduce both the Generalized Information Criterion (GIC) and the extended
Generalized Information Criterion (EGIC) and study their asymptotic properties.
Section 1.4 reports results from a simulation study. We then apply GIC to solve
the problem of measuring long-term post-event abnormal return in Section 1.5. We
conclude the paper with summary and discussion in Section 1.7. Proofs of theorems

in this paper are given in the Appendix.
1.2 Statistical Model

Let y; be the return of investing in a chosen target during time period ¢, that is,

__ Target’s price at the end of ¢ — Target’s price at the end of £ — 1
- Target’s price at the end of ¢ — 1 ’

4
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Let y = (y1,---,y-) be a vector of returns for ¢ = 1,2, ---, 7, and y has the following
representation:

y=p+e, (1.1)

where o = E(y) is the mean of y and e = y — p is a vector of random variables
with mean zero. Note that we allow the expected return of the target to change with
time in any way.

Suppose that m other stocks are available for building a tracking portfolio of the
target. Let X = (%1, ---,®.,) be a 7 x m matrix of rank m, where column z; is a
vector of returns on the jth stock for ¢ = 1,2,...,7. Let V be the collection of all
nonempty subsets of {1,2,---,m}. Each subset v € V indexes a group of stocks. Let
X (v) be the submatrix of X whose columns are returns on stocks in the subset v. To
build a tracking portfolio consisting of all stocks in the subset v, we fit the following

linear model of y against the matrix X (v),
y=X(©)B) +ev) , (1.2)

where the dimension of 3(v) is equal to the size of the subset v. Note that the error
component e(v) depends on v and differs from the random vector e in (1.1). More
specifically, the error component e(v) is the sum of the random vector e in (1.1) and
the model misspecification error.

Let B3(v) denote an estimate of B(v). Then an estimate of the expected value
p = E(y) is given by f1(v) = X (v)B(v). The goodness of the estimate is measured

by the average squared error loss

5 2
L(v) = Ll = 2()IF , (1.3)
T
where || - || is the Euclidean norm. The objective of model selection is to find the

subset v whose associated estimate /i(v) minimizes the average squared error loss.
Once the minimizing subset v is found, the portfolio that consists of all stocks in the

subset v with B(v) as the portfolio weights will be the optimal tracking portfolio.
5
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In the context of building a tracking portfolio, the coeffficients 3(v) in the linear
model (1.2) have to sum up to one. The left hand side of (1.2) is the return of
investing one dollar in the target. The right hand side of (1.2) is the return of
investing one dollar in the portfolio of stocks in the subs-et v, plus random noise.
Each coefficient in B(v) is the proportion of a dollar invessted in the corresponding
stock, and the sum of all coefficients accounts for 100 percent of the dollar.

Give a subset v, to estimate the linearly constrained coefficients, we take the
model reduction approach given in Hocking (1985, Chapter 3). We briefly describe
the approach in the remainder of this section for the sake of the self-completeness of
this paper. To simplify notation, we drop the subset index v temporarily.

A linear model with general linear constraints is characsterized by

y=XB+e, (1.4)

subject to GB =g,

where y is a vector of dimension 7, X is a 7 X m matrix of rank m, B is a vector of
m coefficients, G is a ¢ X m matrix of rank ¢, and € is a ramdom vector.

An estimate of B can be obtained by the model reduction approach as follows.
The coefficient vector 3 and the constraint matrix G are paTtitioned in the way such

that the constraints are written as
G1B8,+G28,=g,
where G'; is a ¢ X ¢ matrix of rank g. Solving for 3, yields
B, =Gi'g—G{'G.j, . (1.5)

Corresponding to the partition of 8, we partition X as X = (X; X,), where X is
a T X ¢ matrix. Substituting the partition into the constraimed model, we obtain the

following unconstrained model

Yr=XrBs+€.
6
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where y, =y — X;G;'g and Xp = X, — X 1G7'G2. The least square estimates
for B, is then given by

B: = (XpXp) ' Xyyr -
Substituting 3, in (1.5), we get ,Bl = Gl"lg—Gl_ng,Bz . We can write the estimator
for B together as

-~ % -1 J— -1 -~
S RO e LR

Then the estimate of 4 = F(y) is given by
p=XB=n+Hy. (1.7)
where H = X (X', X z)"1 X" and n = (I — H) X ,G7lg.
1.3 The Generalized Information Criterion

In the context of unconstrained linear models, numerous criteria have been
proposed to select variables, see, e.g., Hocking (1976), Thompson (1978a, b), Miller
(1990), George (2000), and references therein. In Section 1.3.1, we discuss the
Generalized Information Criterion (GIC) for selecting variables in constrained linear
models when observations are independent, and prove the asymptotic loss efficiency
and consistency of the GIC. In Section 1.3.2, we extend the GIC to constrained linear
models with dependent observations, and give conditions under which the extended
GIC is still asymptotically loss efficient and consistent.

We consider constrained linear models of the following form:

Yy, = X, (v)B(v) +e-(v), (1.8)

subject to U'B(v) =1,

where v belongs to V', the collection of all possible nonempty subsets of the m
covariates, ! is a vector of ones with the same dimension as B(v), and 7 is the

7
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number of observed time periods. Note that the coefficients in B(v) vary with the
subset v but not with 7. In other words, we assume that the linear relation between
y, and X .(v) is fixed through time. Let g, = E(y,). A candidate model v € V is
said to be correct if there exists 3(v) such that . = X, (v)B3(v) for all 7. Let V¢
be the collection of all candidate models that are correct.

In the remainder of this paper, the subset index v € V' is attached to quantities
that depend on choice of the subset v, and the subscript 7 is used to indicate

quantities that vary with 7.
1.3.1 Independent Observations

Recall the following identity representation of y,, first introduced in equation
(1.1),
Y, =p.+e .
In this subsection, we assume that the elements of e, are independently and
identically distributed with a normal distribution of mean 0 and variance o2.
The Generalized Information Criterion (GIC) selects a model in the form

(1.8) that minimizes

Ff('v) — “y'r - i‘“‘r(‘u)“2 + AT&ztr(Hf(v))

T T

(1.9)

over v € V, where &2 is an estimator of o2, tr(H,(v)) is the trace of the matrix

H . (v) introduced in equation (1.7), and A is a sequence of non-random positive
numbers. Note that 62 does not depend on the model v and can be obtained by
fitting the linear model with all m covariates included. Note also that tr(H .(v)) is
equal to the number of unconstrained coefficients in the linear model (1.8).

Let U, denote the subset that minimizes the Generalized Information Criterion

(GIC), I'(v), over v € V. Let v% be the subset that minimizes the average squared
error loss, L,(v), over v € V. Shao (1997) studies the asymptotic validity of a

8
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model selection procedure in terms of two criteria: consistency and asymptotic loss

efficiency. The GIC selection procedure is said to be consistent if
P{o, =vE} 51 as 7o 0,
and to be asymptotically loss eflicient if
L (3.)/L(v2) B1 as 7 o0,

where 5 denotes convergence in probability. Throughout this paper, all limiting
processes are taken as 7 — oco.
The following lemma gives explicit expressions for the average squared error loss

L.(v) and the expected average squared error loss R.(v) = E(L.(v)).

Lemma 1.1 Assume that the elements of e, are i.i.d. with a normal distribution of

mean 0 and variance 0. The average squared error loss defined in (1.3) is equal to
L.(v) = A (v) + (e.H (v)e,)/T,

where A-(v) = (||g, — 0, (v) = H (v)p |?)/7 and e, ~ N(0,0%L,x,) is the vector
of random variables in (1.1). Furthermore, A.(v) = 0 for v € V. In addition, the

ezpected average squared error loss, is
R.(v) = E(L.(v)) = A,(v) + o*tr(H . (v)) /T .

Proof of Lemma 1.1 is given in the Appendix. Lemma 1.1 points out that the
average squared error loss has two components: one is the model misspecification
error A (v), and the other is estimation error (e, H ,(v)e,))/T due to randomness in
observed data. When the model v is correct, the model misspecification error A, (v)
is zero.

The following theorem shows that 7, is consistent and asymptotically loss efficient

under certain conditions. The proof of the theorem is given in the Appendix.

9
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Theorem 1.1 Assume that the elements of e, are i.i.d. with a normal distribution
of mean 0 and variance o and the estimator 62 used in computing the GIC, ['(v),

ts bounded. Under the following conditions

Ar = 00, ArfT =0, (1.10)
and Ar =0 forall veV —V©, (1.11)
TR (v)

the GIC minimizer ¥, is asyﬁptotically loss effictent. In addition, if V' contains at

least one correct model, then 0. is consistent.

Remark 1.1 Shao (1997) proves both the asymptotic loss efficiency and consis-
tency for unconstrained linear regression models with i.i.d. random errors under

condition (1.10) and the following condition (Theorem 2, Shao (1997))

liminf min A,(v) >0. (1.12)

T30 yeV-Ve

It is easy to see that conditions (1.10) and (1.12) together implies condition (1.11)
because R, (v) > A (v). Shao’s condition (1.12) requires that the model misspecifi-
cation error A, (v) be bounded away from zero uniformally for all incorrect models.
Our condition (1.11) suggests that, as long as the model misspecification error of

incorrect models tends to 0 at a rate slower than 1/7, the GIC minimizer ¥, is still

asymptotically valid.
1.3.2 Dependent Observations

In this subsection, we extend GIC to linearly constrained regression model with
dependent observations. Specifically, we assume that {e;}2__ is a stationary
Gaussian process with mean E(e,) = 0 and E(eie;+;) = 7;. We further assume
that the autocovariances {v;}32, are absolutely summable, that is,

TE70+2ZI’YJ'| < oo. (113)
j=1

10
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Then the covariance matrix for e,, denoted as ¥, is given by

Yo M ot Yem1
- —2
‘P,— — ')fl ')tO . ’Y-r. ) (1'14)
Yr—1 Yr—=2 ° Y0

The extended Generalized Information Criterion (EGIC) selects a model

that minimizes

ly. — 2. IF Artr(¥ - H (v))

T T

®,(v) = (1.15)

over v € V, where ¥, is an estimate of ¥, and Ar 1s a sequence of non-random
positive numbers. Note that ¥, does not depend on model v and is obtained by
fitting a linear model with all available explanatory variables included.

Let 7, denote the model that minimizes the extended Generalized Information
Criterion (EGIC), ®.(v), over v € V. Let vf be the model that minimizes the
average squared error loss, L,(v), over v € V. The EGIC selection procedure is said
to be consistent if P{%, = v} — 1. The EGIC selection procedure is said to be
asymptotically loss efficient if L.(.)/L-(vE) B 1, where 5 denotes convergence
in probability.

The following lemma gives explicit expressions for the average squared error loss
L.(v) and the expected average squared error loss R.(v) = E(L,(v)). Proof of the
Lemma is given in the Appendix.

Lemma 1.2 Assume that {e,}{2_, ts a stationary Gaussian process with E(e;) =0

le. vl

and v; = E(e,e,+j). The average squared error loss defined in (1.8) is equal to
L (v) = A (v) + (e H -(v)e,)/T,

where A, (v) = (||, —n,.(v)—H-(v)u||?) /7. Furthermore, A, (v) =0 whenv € V°.

In addition, the ezpected average squared error loss is given by
R.(v) = E(L,(v)) = A(v) + tr(¥, H,())/7,

where the matriz ¥, is the covariance matriz given by (1.14).

11
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The results on the consistency and asymptotically loss efficiency for 4, are given

in the following theorem. Proof of the theorem is in the Appendix.

Theorem 1.2 Assume that {e;}2__ is a stationary Gaussian process with E(e,) =
0, 77 = E(ecersj), and T =1 +2 332, [75] < 00. We further assume that U, used in
computing the EGIC, ®.(v), is a consistent estimator of ¥, and that tr(¥ . H .(v))
converges to a finite limit as T — oo for any v € V°. Under the following conditions

that
Ar = 00, AfT =0, (1.16)
A,
—0 forall veV —V©°, (1.17)
7R (v)

the EGIC minimizer U, is asymptotically loss efficient. In addition, if V contains at

and

least one correct model, then U, is consistent.

Remark 1.2 Theorem 1.2 does not include Theorem 1.1 as a special case. Even
though Theorem 1.1 deals with a special case ¥, = ¢2I,, it puts less restriction on

the estimator of o2, requiring the estimator of o2 is bounded rather than consistent.

The following corollary shows that some common stochastic processes are included

in Theorem 1.2. The proof of the corollary is simple and omitted.

Corollary 1.1 Theorem 1.2 is valid when {e.}2_., is an infinite moving aver-
age Gaussian process given by e, = X.52,%j;a,_;, where a; ~ i.i.d.N(0,02) and

520 |¥j] < oo.

Remark 1.3 The Gaussian infinite moving average process specified in Corollary 1.1
includes stationary Gaussian processes AR(p), MA(q) and ARMA(p, q) as special

cases.

12
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1.4 Simulation

We carry out the following simulation study for two purposes: first, to empirically
check the validity of GIC’s optim al properties, and second, to understand how choice
of the penalty ), affects GIC’s performance in finite samples.

1.4.1 Data and Setup

We use historical stock returns in the simulation study. We randomly selected five
stocks and extracted their monthly returns for 96 months between January 1981 and
December 1988 from the database distributed by the Center of Research in Securities
Prices (CRSP). The selected five stocks are Wal Mart Stores Inc. (WMT), Dayton
Hudson Corp. (DH), Mac Frugals Bargains Close Outs (MFB), Service Merchandise
Inc. (SM), and Family Dollar Stores Inc (FDS). Figure 1.1 shows the time series
plots on the left column and the sample autocorrelation function plots on the right
column of the monthly returns of the five stocks. Since the sample autocorrelation
function plots show that these monthly stock returns are not autocorrelated, we use
GIC instead of EGIC in this simulation study.

The monthly returns of the five stocks, denoted by {zy:,...,zs:}, are used as

independent variables in the following regression model
Yr = B1Z1: + BoTor + P33t + PaTar + PBsTse + &, t=1,---,T

subject to LGi+ LB+ B3+ La+Ps=1.

Fixing the coefficients at (0.3, 0, O, 0.4, 0.3) throughout the simulation, we simulate
the response variable y; by generating random errors ¢, from the normal distribution
N(0,02). We choose the standard deviation ¢ equal to 0.0385 throughout the
simulation. The number 0.0385 is the sample standard deviation of the 96 monthly

returns on the CRSP value weighted market index between January 1981 and
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December 1988. Returns on the value weighed market index are also extracted from
the CRSP database.

Two sets of simulations are carried out in this study. For the first set, we chose the
number of observations 7 to be 36, 60, and 96. Two common choices of the penalty
Ar are employed: one is the A, = log7 and the other is A\, = /7. Given 7 and A,
we generate 1,000 samples of response variables, each sample of T observations. For
each sample, we compute the Generalized Information Criterion (GIC), I'/(v), for
all 31(= 2° — 1) subsets of explanatory variables, and identify the subset minimizing
GIC. We count how many times each subset minimizes GIC out of the 1,000 samples.
The counts are reported in Table 1.1.

In the second set of simulation, we choose the number of observations T to be 36,
60, 96, 120, and 240. Since we have only 96 observed monthly returns, we decide to
simulate 240 values for each stock in the following way. For each stock, we compute
the sample mean and standard deviation of the 96 observed monthly returns after
omitting two extreme values at each tail. Sample means of the five stocks are 0.0349,
0.0234, 0.0200, 0.0218, and 0.0258, while sample standard deviations are 0.0715,
0.0724, 0.0931, 0.1131, and 0.1015. We use Kolmogorov-Smirnov Goodness-of-Fit
Test to check whether returns of the five stocks are normally distributed and get the
following p-values: 0.5, 0.5, 0.0622, 0.5, and 0.0288. Since monthly returns of the five
stocks are approximately normally distributed, we generate 240 values for each stock
from a normal distribution with mean and standard deviation respectively equal to
the stock’s sample mean and sample standard deviation. Other aspects of simulation

are the same as in the first set of simulations. The results are reported in Table 1.2.
1.4.2 Results

Both Table 1.1 and Table 1.2 show that, as the number of observations 7 increases,
the probability that the GIC selection procedure picks the correct model (1, 4, 5) gets

closer to 1. It confirms the validity of consistency of the GIC procedure. Both tables
15
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show that the logarithm rule tends to overestimate the model while overestimation
and underestimation are equally likely when the square root rule is used, which is not
surprising because the square root rule puts heavier penalty on models with many
parameters than the logarithm rule.

Furthermore, both tables show that the probability of selecting the correct model
under the square root penalty goes to 1 faster than under the logarithm penalty.
This phenomenon can be explained by bounds on convergence rates for the error
probabilities of the GIC given in both Shao (1998) and Zhang (1993). Both Shao
(1998) and Zhang (1993) show that the rate at which the probability of choosing
wrong models by the GIC goes to zero is an inverse function of the penalty A,. Since
/T increases faster than log(T), the error probability with the penalty /7 goes to
zero faster than that with the penalty log(7). Practically, this finding suggests that
the square-root penalty is preferable for samples of moderate or large size, say more
than 96 observations. For small samples, the square-root penalty does not seem to
have an advantage over the logarithm penalty.

Contrasting Table 1.1 with Table 1.2, we notice that, under the same combination
of T and A, the probability of selecting the correct model in Table 1.2 is greater
than in Table 1.1. The cause for the difference might be that explanatory variables
used in the second set of simulations are generated independently from normal
distributions while explanatory variables in the first set of simulations, being actual
contemporaneous stock returns, are possibly correlated. Arguments in proof of
Theorem 1.1 does not help to explain how structure in explanatory variables affects
the probability of selecting the correct model.

In next section, we apply GIC to build a tracking portfolio so as to compute

post-event long-term abnormal returns.

16
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Table 1.1. Simulation with observed returns

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Candidate Ar = log(T) sqrt(T)
Models =36 60 96 [7=36 60 96
(1) 0 0 0 0 0 0
(2) 0 0 0 0 0 0
(3) 0 0 0 0 0 0
(4) 0 0 0 0 0 0
(5) 0 0 0 0 0 0
(1, 2) 0 0 0 0 0 0
(1, 3) 0 0 0 0 0 0
(1, 4) 0 1 0 7 4 0
(1, 5) 0 0 0 1 0 0
(2, 3) 0 0 0 0 0 o
(2, 4) 0 0 0 0 0 0
(2, 5) 0 0 0 0 0 0
(3, 4) 0 0 0 0 0 0
(3, 5) 0 0 0 0 0 0
(4, 5) 31 1 0 120 26 2
(1, 2, 3) 0 0 0 0 0 0
(1, 2, 4) 0 0 0 0 0 0
(1, 2, 5) 0 0 0 0 0 0
(1, 3, 4) 0 0 0 0 0 0
(1, 3, 5) 0 0 0 0 0 0
(1, 4, 5) 832 911 953 799 928 991
(2, 3, 4) 0 0 0 0 0 0
(2, 3, 5) 0 0 0 0 0 0
(2, 4, 5) 49 19 1 37 20 5
(3, 4, 5) 37 16 2 29 15 2
(1, 2, 3, 4) 0 0 0 0 0 0
(1, 2, 3, 5) 0 0 0 0 0 0
(1, 2, 4, 5) 23 34 24| 5 4 0
(1, 3, 4, 5) 25 16 20 2 2 0
(2, 3, 4, 5) 2 0 0 0 1 0
(1, 2, 3, 4, 5) 1 2 0 0 0 0
17




sqrt(T)
60 96 120 240

36

120 240
15
14

17
16

log(T)

96

22
26

A,
60

Table 1.2. Simulation with simulated returns
0
0
0
0
0
0
0
0
0
0
0
11
0
0
0
0
0
905 946 950 967 971 (951 993 999 1000 1000
0
0
0
2

36

18

Models
(1)
(2)
(3)
(4)
(5)

(1,2)
(1, 3)
(1, 4)
(1, 5)
(2, 3)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
(4, 5)
(1, 2, 3)
(1, 2, 4)
(17 21 5)
(1, 3, 4)
(1, 3, 5)
(1, 4, 5)

Candidate
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1.5 Application

In this section, we apply GIC to build a tracking portfolio for the purpose
of measuring long-term post-event abnormal stock return. A great interest in
learning the long-term impact of corporate actions has recently arisen among finance
researchers and generated a considerable literature that is still growing. The evidence
for existence of long-term post-event abnormal stock return challenges the belief
that the U.S. stock market is efficient, and motivates research in behavioral finance.
See Fama (1998) for a summary of the literature and references therein. In these
studies, the most important job is to precisely estimate what the event firm’s return
would have been if the event had not happened. In the following, we compare the

performance of three estimation methods.
1.5.1 Estimates of Abnormal Return

The three-year buy-and-hold abnormal return of firm :, denoted as AR; is

measured as follows

AR; = R; — BR; , (1.18)

where R; is the buy-and-hold return of firm 7 over the same three years, and BR; is
a specific benchmark-hold return over the same three years. The benchmark return
is an estimate of the unobservable status quo return that an event firm would have
had over the three years following the event month if the event had not happened.
The three-year buy-and-hold return of firm 7 is computed by compounding monthly
returns, i.e., R; = H?il(l + ;) — 1, where 7;, is firm 7’s return in month ¢.

We use four benchmarks to estimate the unobservable status quo return of
an event firm. The first benchmark is a size and book-to-market ratio matched
portfolio. Similar benchmarks are widely used in existing finance literature, e.g.,
see Dharan and Ikenberry (1995), Desai and Jain (1997), Barber and Lyon (1997),
Lyon, Barber and Tsai (1999), and Mitchell and Stafford (2000). To identify the
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size and book-to-market ratio matched portfolio of an event firm, we construct
70 reference portfolios on the basis of firm size and book-to-market ratio and the
matched portfolio is the one that includes the event firm. The 70 reference portfolios

are formed according to the following procedure of three steps.!

Step 1: At the end of June of year ¢, we calculate firm size as price per share
multiplied by shares outstanding, sort all NYSE firms by firm size into ten
portfolios of equal size, and then place each AMEX /Nasdagq firm in the portfolio

whose range of firm sizes covers the firm’s size.

Step 2: We partition the smallest size decile portfolio into five subportfolios of equal
size on the basis of firm size rankings of all firms in the portfolio without regard

to listing exchange, so that we have 14 firm size portfolios. 2

Step 3: We divide each of the 14 portfolios into five subportfolios of equal size by
ranking all firms in the portfolio by their book-to-market ratios at the end of
year t — 1, so that we end up with 70 reference portfolios. In the last step of
the procedure, a firm’s book-to-market ratio at the end of year ¢ — 1 is equal
to the ratio of the book common equity (COMPUSTAT data item 60) at the
end of the firm’s fiscal year ending in year ¢t — 1 over the firm’s market common
equity at the end of December of year ¢t — 1. Throughout the procedure, we
include only stocks with ordinary common equity shares (that is, firms with
CRSP share code being 11) and exclude firms of negative book common equity

whenever book equity is needed.

!The procedureis created in the same spirits as Fama and French (1993), and is almost identical
to that in Lyon, Barber and Tsai (1999). The only difference between our procedure and that in
Lyon, Barber and Tsai (1999) is that we use firms with CRSP share code being only 11 while they
allow the CRSP share code to be both 10 and 11.

2 A majority of Nasdaq firms are small and thus fall into the smallest size decile portfolio; as a
result, approximately 50 percent of all firms fall in the smallest size decile. By further partitioning
the portfolio, we make the 14 size portfolios have almost the same number of stocks.
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The benchmark return based on a size and book-to-market matched portfolio is

computed as follows:

36 e .
BRSZBM — T [1 + g—ﬂ] -1, (1.19)
t=1 L

where 7}, is the monthly return of firm 7 in month ¢ and n, is the number of firms
in month . We label the first benchmark as B1:SZBM and that is how the above
abnormal return gets its superscript “SZBM”.

The second benchmark is a portfolio of the ten firms that have the largest
sample correlation coefficients with the event firm among all firms in the size and
book-and-market ratio matched portfolio. To identify the ten firms, we chose the
size and book-and-market ratio matched portfolio for the event firm as described
above, identify all firms in the portfolio that have returns for the five years before
and the three years after the event month, calculate the sample correlation coefficient
between each identified firm and the event firm based on the 60 monthly returns in
the pre-event five years, and then choose the ten firms that have the largest sample
correlation coefficients. We label the second benchmark as B2:MC10 for the most

correlated ten and compute the three-year post-event benchmark return as follows

10 1136 (1+r-)]—1
MC10 _ [ t=1 jt
BRIT =2, 10 ’

i=1

(1.20)

where 7}, is the monthly return of firm j in month ¢t. The benchmark return is return
of investing equally in the most correlated ten firms over the three years starting
with the event month.

The third benchmark is simply the buy-and-hold return of the single most
correlated firm over the post-event three years. In contrast with the second
benchmark, this benchmark use only the single firm that has the largest sample
correlation coefficient with the event firm in the five years before the event month.

We label this benchmark as B3:MC1 for the most correlated one.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The fourth and last benchmark falls between the second and the third benchmark.
After obtaining the most correlated ten firms as in the second benchmark, we apply
the GIC selection procedure with the event firm as the response variable and the ten
firms as explanatory variables using the 60 monthly returns in the pre-event five years.
We use the optimal tracking portfolio resulted from the GIC selection procedure as
a benchmark and label it as B4:GIC. We compute the three-year post-event return
of the benchmark B4:GIC as follows

n; 36
BR?[C = ij [H(l +'7‘]'¢) -_ l} , (1.21)
=1 t=1

where 7;, is the monthly return of firm j in month ¢, n; is the number of firms in
the GIC optimal tracking portfolio, and w; is the optimal weight of the jth firm in
the GIC optimal tracking portfolio. In contrast to B2:MC10 and B3:MC1, B4:GIC
removes unrelated firms from B2:MC10, keeps more relevant firms than B3:MC1,
and also allows different weights for different stocks in the tracking portfolio.

1.5.2 Empirical Assessment of Performance

To assess the performance of the three benchmarks, we employ a procedure which
uses actual security return data to examine the characteristics of abnormal returns
produced by the three benchmarks. This type of procedure has been used widely
in finance literature to compare performance of various methodologies for measuring
abnormal returns, see, e.g., Brown and Warner (1980), Kothari and Warner (1997),
Barber and Lyon (1997), and Lyon, Barber and Tsai (1999).

In the simulation procedure, we randomly choose with replacement a sample
of 200 event months between July 1984 and December 1994, inclusively. In each
selected event month, we then randomly choose an event firm without replacement
that has returns for the five years before and the three years after the event month.
We compute the three-year post-event abnormal return for each event firm using all

three benchmarks. Since the 200 event firms are randomly selected and not many
22
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of the 200 event months were supposed to experience any event, we expect that the
200 abnormal returns concentrate around zero.

Panel A of Table 1.3 reports sample mean, median, standard deviation, inter-
quartile range, skewness coefficient and kurtosis coefficient of the 200 abnormal
returns under each benchmark. Student’s ¢ test is employed to test the null hypothesis
that mean of abnormal return is zero while Fisher’s distribution-free sign test is used
to test the null hypothesis that median of abnormal return is zero (See Hollander
and Wolf (2000) for detailed description of Fisher’s distribution-free sign test). The
p-values from both tests are reported in the last two columns.

The t test shows that none of the four benchmarks yield mean abnormal
return significantly different from zero. The sign test reports that the first two
benchmarks B1:SZBM and B2:MC10 have significantly non-zero median abnormal
return while the last two benchmarks B3:MC1 and B4:GIC do not. Since sample
skewness coefficients and sample kurtosis coefficients under all four benchmark are
far away from the theoretical values of a standard normal distribution (the theoretical
skewness and kurtosis coefficients of a standard normal distribution are 0 and 3,
respectively), we believe that median is more appropriate than mean in measuring
central tendency of abnormal returns and that the sign test is more appropriate than
the t test in telling the difference between benchmarks. Based on the sign test, the
last two benchmarks B3:MC1 and B4:GIC produce abnormal returns for this sample
that are on average close to zero. Since the sample of 200 firms under current study
are randomly selected without actual events occurring in specified event months,
abnormal returns are expected to be close to zero on average. From this point of
view, the last two benchmarks do a better job for this sample than the first two
benchmarks. The reason why the first two benchmarks underestimate abnormal
return (median of abnormal returns under B1:SZBM and B2:MC10 are -0.2555 and
-0.1466, respectively) might be that both benchmarks include many stocks in their
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Table 1.3. A sample of 200 randomly selected firms.
Descriptive Statistics p-values
mean median std iqgr  skewness kurtosis t sign

Panel A: Abnormal returns under four benchmarks

B1:SZBM || -0.022 -0.256 1.180 0.957 1.437 6.982 0.794 0.009
B2:MC10 || 0.054 -0.147 1.145 0.995 1.389 6.775 0.503 0.028
B3:MC1 | -0.021 0.069 2.214 1.109 -3.323 23.699 || 0.896 0.289
B4:GIC 0.084 -0.030 1.381 0.941 0.115 9.856 0.390 0.621

Panel B: Paired difference in abnormal return between benchmarks

d(B4, B1) {{ 0.106 0.163 0.884 0.652 -2.811 17.689 || 0.092 0.000
d(B4, B2) || 0.030 0.063 0.674 0.550 -2.494 14.443 |} 0.533 0.019
d(B4, B3) || 0.105 -0.075 1.322 0.536 5.037 38.007 || 0.264 0.056
d(B1, B2) || -0.076 -0.050 0.416 0.328 0.047 8.765 0.010 0.009
d(B1, B3) (| -0.001 -0.213 1.889 0.847 5.366 38.348 || 0.993 0.000
d(B2, B3) | 0.075 -0.185 1.712 0.833 5.369 39.139 (| 0.537 0.000

benchmark portfolios (at least 10 stocks) and the average return of these many stocks
is closer to the market return than an event firm’s return.

Panel B of Table 1.3 reports paired difference in abnormal return between the four
benchmarks. Paired difference in abnormal return between any two benchmarks is
the difference between the abnormal returns under the two benchmarks for each firm
in the sample. For example, the paired difference between B1:SZBM and B2:MC10,
d(B1, B2), is a vector of 200 values, each value for one firm being the difference
between abnormal return under B1:SZBM and that under B2:MC10. The paired
difference gives a direct and precise comparison between benchmarks. Again, the sign
test is more appropriate than the ¢ test in testing the difference between benchmarks.
Based on the sign test, B4:GIC is significantly different from B1:SZBM and B2:MC10
while B4:GIC is different from B3:MC1 with a p-value of 0.0560.

1.6 Proofs

Proof of Lemma 1.1:

24
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The loss function L.(v) can be decomposed as follows

7L, (v) e, — &, ()12

= [, — (n.(v) + H.(v)y,)|]?

= g, —n.(v) - Hy(v)p, — Hr(v)e,|?
= |ty — 1,(0) — Ho (o), I + €, (v)e,
- 26;,H:.('U)[[L.r - HT(U)“r - 1].‘,(1})]

= ””-r - nr(v) - HT(U)I‘-,—Hz + ef,-l%t-,—(‘l))e.r .

The second and third equality holds because of (1.7) and (1.1), respectively. The
fourth equality holds because H..(v) H .(v) = H,.(v). The last equality holds because
H.(9)[1, — Ho(0)pt, —1,(0)] = Ho (o) (I — HL(5)) (s — X1(6)Gig(v)) = 0.

For v € V¢, we know u, = X, (v)B.(v) and that the random vector € in the
constrained linear model (1.4) has mean zero. Then the least square estimate 3
in equation (1.7) is unbiased. By taking expectation on both sides of equation
(1.7), we obtain X .(v)B,.(v) = n,.(v) + H, (v)u,. Therefore, we obtain A (v) =
lper = n.(v) — H-(v)s.|[?/7 = 0.

The expression for the expected average squared error is obtained as follows

R.(v) = E(L.(v))
= A,(v) +E(e.H (v)e,)/T
= A, (v) +tr(H. (v)Var(e,))/T
= AL (v) +ctr(H (v)/T

a
Proof of Theorem 1.1:
In the proof, we use arguments in spirit similar to those in Li (1987) and Shao

(1997).
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First, note that the GIC procedure is to minimize

L) = W¥-—2IF A, 82tr(H (v))

T T

lle|l? + 7Lr (v) +2e7 (1 (v) — 2,(v)) | ArG7tr(H.(v))

T

For v € V¢, since pu,.(v) — n,.(v) —~ H (v)p,.(v) =0 and L.(v) = (e; H (v)e,)/T, we

get
T, (v) = lleP | A-g3tr(H(v) _ e H.(v)e
T T T
For v € V — V¢, we have
2 - 2 sy
r = ledly L) = BOIF | (o052 = 200tr (H (v)

(1.22)

L2t (Ho(v) — ey Ho(v)es]  2€t[p,(v) = (n,(v) + Ho(v)p.(v))]

T T

— ”e;HfZ + L ('v) + Op(L'r('U))

(1.23)

where the last equality holds uniformly in v € V —V*. To establish the last equality,

it suffices to show that in probability,
s (v) = (m,() + H0)es, ()] 5,

max

veEV Ve TR (v) ’
o*tr(H,(v)) — e H.(v)e, ,
vevaye TR, (v) =0,

(Ar62 — 20%)tr(H (v)) ,

v§%° TR,—('U) 0

and
L, ('U) P,

ueva(u) —1=0.

(1.24)

(1.25)

(1.26)

(1.27)

We shall prove (1.24) first. Given any € > 0, by Chebyshev’s inequality we have

el‘r vj— v —Hr v v
P {ma.xvev_v 12300 '7:}(?#)(”) () (v)]

EfeL (i _(v)-N_w)-H. (wp_ )
S EveV—VC [ R (v)e]?

Since E(e) =0, we know

E‘[e{r(yr(v) - T}.,.('U) - HT(U)”T(U))]2
26
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= Var(el(p,(v) — n,.(v) — H-(v)p.(v)))
= (#.(v) = n.(v) — H (0)p.(v)) I, (p(v) —n,(v) — Hr(v)p(v))
= oF|p.(v) — n.(v) — H (v)p, ()|,

where Var(-) gives the covariance matrix of its argument. Since TR.(v) > ||p(v) —
1.(v) — H.(v)p,.(v)||?, the right hand side of (1.28) does not exceed

e > 1

€2 cv_ve TR-(v) ’
which tends to 0 by condition (1.11). We thus obtain (1.24).

Next, we shall prove (1.25). Since e, is normally distributed with F(e,;) = 0

and Var(e,) = o2I,, it is well known that E(e.H (v)e,) = o%tr(H.(v)) and
Var(e! H . (v)e,) = 2c*r(H, (v)H.(v)). Given any € > 0, by Chebyshev’s inequality

>}

we have,

p{ g, [P
< ,,GVZ_:VC E[tr(\I',H[,T(;)T)(v_)ET;T H,(v)e,]?
-

veV Ve

Since R, (v) > 0, the last term goes to zero under conditions (1.11). We thus obtain
(1.25).

To prove (1.26), we note that both 62 and tr(H.(v)) are bounded. Then (1.26)
holds under condition (1.11).

Finally, (1.27) is equivalent to (1.25) since

L) | _ L)~ R _ |e,H (v)e, = oPtr(HL ()]
R.(v) R.(v) TR, (v)
We thus conclude the proof of equation (1.23).
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Next, we show the asymptotic loss efficiency and consistency of the GIC minimizer
U, using equations (1.22) and (1.23). When V* is empty, we know from (1.23) that
7, is asymptotically equal to the minimizer of L. (v), that is, 9, is asymptotically loss
efficient.

When V¢ is not empty, we can show that for any v° € V¢,

T, (v°) — e[|

= op(L,(v)) (1.29)
uniformly in v € V' — V¢, using similar arguments in proof of (1.26) and (1.25).
Equation (1.29) together with equation (1.23) implies that ¥, will always belong to
V¢ asymptotically if V¢ is not empty.

We can further prove, using similar ar ents in proof of (1.25),
PO eV N 2tr (EL - (v)) P (1.25)
e H. (v)e,

P,
0.
ek Nk (Ho(0)

Then we know from (1.22), for v¢ € V¢, I',(v) —||e-||?/7 is asymptotically dominated
by the term A,62%tr(H.(v))/T. Because &, is bounded and does not depend on
the index v, the dominating term \,62tr(H,.(v))/T has the same minimizer as

L.(v) = e/ H.(v)e,./T asymptotically. Therefore we obtain
P{%, € V° but 9, #vE} >0, (1.30)

which means that ¢, is asymptotically loss efficient when V* is not empty.
Equation (1.30) also implies that P{9, = v} — 1 when V° is not empty. We

thus conclude that 7, is consistent. O

Proof of Lemma 1.2:

Proof of the first two parts is identical to proof of Lemma 1.1. So only the last

part is proved here.

R.(v) = E(L.(v))
A-(v) + E((e.H,(v)e,))/T
28
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AL (v) + tr(E(e e’ ) H .(v))/T
= A.,-('U) + tr(\I’.,-H-,-('U))/T

The following two lemmas are necessary for the proof of Theorem 1.2.

Lemma 1.3 Let ¥, be the covariance matriz given by (1.14). Leta = (a;,a2,---,a,)

and b = (by,by,---,b,) be any two vectors. The following inequality holds

llal? + |15
2

|a' ¥, b] < T,

where T is the absolute sum of autocovariances given in (1.13). In particular, when

llal[2 = [|B][® = 1, we have [a"®.b] < T.

Proof of Lemma 1.3:

Because of the special structure ¥, we have

Z Z arbrve—t
Yo Z arb; + Z <’Y1. Z(az+1bz + azbz+z)) l

i=1

< ’YoZlazbzl'*'E (I%IZ(lambzl+|azbz+=l)) .

la' T b =

Notice that
T T.a? + b? all® + |[b]]?
San <A _lall TP
=1

=1

and for any ¢ € {1,2,---,7 — 1},

T—1 T—1 T - 2 >
S s SR < 3 (a4 ) = ML OE

...
il
—
L onl
I
-

and similarly

T—1 T—t a + b ; 1 T T a 2 + b 2
Zalb,_H S z bt SN £ 1 1 S 5 (Za? _*_2612) — ” ” 5 “ ” .
=1 =1 =1
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We thus obtain

llalf® + (6]

_ llel® + (ol
2 =" 5 I

4

la’'¥.b| < (o +2)_|%l)
e

O

Lemma 1.4 Suppose that H is an idempotent matriz of rank r. Then

tr(¥,.H) <rY and tr(¥ . H¥ H)<(rY)?.

Proof of Lemma 1.4:

I,

0 0
identity matrix of dimension r. Since H is an idempotent matrix of rank r, there

Let the 7 X T matrix A be , be a 7 X 7 matrix where I, represents the

exists a = X 7 orthogonal matrix C such that C'HC = A. Then we have
tr(¥.H) =tr(¥,CAC’) =tr(C'T,CA) =D _ ¢ ¥.ct ,
k=1
where ¢y is the kth column vector of the matrix C. Since C is orthogonal, e =1
for k=1,2,---,7, and thus we know tr(¥.H) < rY by Lemma 1.3.

Notice that tr(¥,.H) = tr(AC'¥,.CA) and AC'¥,CA is symmetric and non-
negative definite. Therefore we have tr(¥, . HY . H) < [tr(T . H)]2 < (r7)2. O
Proof of Theorem 1.2:

First, note that the EGIC procedure is to minimize

S (v) . A tr(8, H ,(v))

& .(v) =

llell® +llp,(v) — 2 @)II* + 2€7 (1. (v) — 1. (v)) Artr(8 H.(v))

For v € V<, since pu(v) — n,.(v) — H.(v)p.(v) =0, we have L.(v) = (e. H (v)e,)/T

and thus

_lled? | Artr(¥,Ho(v)) _ & Ho(v)e

®.(v) = (1.31)

T T
Forv eV — V¢, we have
lecll? |, lpo(0) = @ | Artr(FH,(v)) = 2tr(¥ HL(v))

T T T
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L 2ir(¥,H,(v) — e, H. ()er] |, 2€,{p1,(v) = n,(v) = H()ns,(v)]

T T

+ L (v) + 0p(L-(v)) (1.32)

lle-I1?

where the last equality holds uniformly in v € V' — V. To establish the last equality,
it suffices to show that in probability,

e [p (v) —n.(v) — H.(v)p, (v)]
S5, TR oo )
max tr(¥, HT(:QTZU)G H-(v)e- 290, (1.34)

A tr(‘P H.(v)) —2tr (V. H,.(v)) ,
% TR, (v) - (1-39)

and
L ('U) P,

S ) —-130. (1.36)

We shall prove (1.33) first. Given any £ > 0, by Chebyshev’s inequality we have

}

Efe’ v)— v H,-v v))]?
< Tevy. BT - Ho o) (1.37)

eLp_(v)-n_w)-H - w)pu_w)]
TR, (v)

P {maxuev-v

Since E'(e) =0, we have

Ble! (1, (v) — 1. (v) ~ Ho(0) 3, ()]
= Var(e; (¢, (v) — n,.(v) — H.(v)p-(v)))
= (1 (v) = 1, (0) = Ho(0)p,(0)) (1, (v) — 1, (0) — Ho(0) 1, (0))
< Y|lp(v) —n,.(v) — H (v)p, ()],

where Var(-) gives the covariance matrix of its argument and the last inequality holds
because of Lemma 1.3. Since T7R.(v) > ||, (v) — n,.(v) — H (v)p,.(v)||?, the right
hand side of (1.37) does not exceed
T 1
e? uGVZ—:VC TR"'(U) ’
which tends to 0 by condition (1.17). We thus obtain (1.33).
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Next, we shall prove (1.34). Since e, is normally distributed with F(e,) =
0 and Var(e,) = ¥, it is well known that E(elH_.(v)e,) = tr(¥.H,.(v))
and Var(elH.,(v)e,) = 2 tr(¥.H . (v)¥.H.(v)). By Lemma 1.4, we know
Var(e, H .(v)e,) < (rT)2. Given any € > 0, by Chebyshev’s inequality we have,
P {ug}?‘(ﬂ tr(¥,.H,(v)) — e.H, (v)e, S &_}

TR (v)
> E[tr(9.H (v)) — €. H,(v)e,]?
veV Ve

[TR-(v)e]?
Var(e, H .(v)e,)
veV Ve [TR,(v)e]?

mT\? 1
< (5) 2. cmor
=) iy TR
Since R-(v) > 0, the last term goes to zero under conditions (1.17). We thus obtain

(1.34).
To prove (1.35), we note that both tr(¥,H (v)) and tr(¥,H(v)) are bounded.

Then since R, (v) > A,(v), we know (1.35) holds under condition (1.17).
Finally, (1.36) is equivalent to (1.34) since

L) _ || _ 15() = R()| _ |e,H (v)e, = tr( % H.(3))|

R.(v) R,(v) TR (v) '

We thus conclude the proof of equation (1.32).

Next, we show the asymptotic loss efficiency and consistency of the EGIC
minimizer 7,, using (1.31) and (1.32). When V¢ is empty, we know from (1.32)
that the minimizer of ®.(v), ¥., is asymptotically equal to the minimizer of L.(v),
that is, ¥, is asymptotic loss efficiency.

When V¢ is not empty, we can show that for any v¢ € V¢,

lle-I?

T

&.(v%) — 122 = 0,(L.(v)) (1.38)

uniformly in v € V' — V¢, using similar arguments in proof of (1.35) and (1.34).
Equation (1.38) together with equation (1.32) implies that @, will always belong to

V¢ asymptotically if V© is not empty.
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We can further prove, using similar arguments in proof of (1.34),

e H. (v)e,
max =
veVe )\ tr(W,.H, (v))

—p0.

Then we know from (1.31), for v* € V¢, ®,(v) —||e-||?/T is asymptotically dominated
by the term X\ tr(¥,H,.(v))/7. Under the assumption that ¥, is a consistent
estimator of ¥, and that tr(¥,.H, (v)) converges to a finite limit as 7 — oo for
any v € V*, the dominating term A tr(¥,.H.(v))/r has the same minimizer as

L.(v) = e, H (v)e,/T asymptotically. Therefore we obtain
P{i, € V° but 4, #vE} =0, (1.39)

which means that ¥, is asymptotically loss efficient when V¢ is not empty.
Equation (1.39) also implies that P{¥, = v£} — 1 when V° is not empty. We

thus conclude that ¥, is consistent. O

1.7 Summary and Discussion

In this paper, we point out that building a tracking portfolio for a target
stock is equivalent to selecting variables in linear regression models with linearly
constrained coefficients. We develop a procedure to build an optimal tracking
portfolio by extending the Generalized Information Criterion (GIC) to constrained
linear regression models with independent observations. We also extend the GIC
to constrained linear regression models with errors following a stationary Gaussian
process. Under mild conditions, the extended GIC is proved to be asymptotically loss
efficient with respect to the average squared error loss, and furthermore, consistent
when a true model exists.

A simulation study is carried out to evaluate the performance of the GIC
procedure in finite samples. The simulation shows that the percentage of selecting

the correct model is increasing and close to one when the sample size increases.
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The results also indicate that the square-root penalty rule performs better than the
logarithm penalty rule for moderate and large sample sizes.

The GIC selection criterion is applied to building an optimal tracking portfolio
for measuring long-term post-event abnormal stock return. We compare the GIC
method with two other methods in measuring abnormal returns of 200 randomly
selected firms that are expected to have zero abnormal return. Our results show that
the GIC method outperforms the other two methods.

In this paper, the extended Generalized Information Criterion (EGIC) for depen-
dent observations has not been applied to monthly returns of individual stocks in both
the simulation and empirical analyses. In fact, it is well documented in literature
that monthly returns of individual stocks have insignificant autocorrelation while
daily returns appear to be negatively autocorrelated, see, e.g., Campbell, Lo and
MacKinlay (1997, Chapter 2) and references therein. In studies on building optimal
tracking portfolios to track daily movements in a chosen financial index, EGIC shall
be employed. In the context of tracking financial indices, choice of penalties in the
selection criterion can be empirically investigated. For instance, we may construct
two index funds based on the logarithm penalty rule and the square-root penalty
rule. The performance of the two index funds can be compared according to how
closely each fund mimics the target index in a given time period. Another direction
of future research is to apply the GIC procedure to measure the long-term post-event

abnormal returns of a sample of firms that actually experienced a specific event.
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CHAPTER 2

RISK MANAGEMENT, DISPERSED
INFORMATION, AND INTERNAL MARKET

2.1 Introduction

Risk management has become an indispensable task in large corporations that de-
mands extensive firm-wide effort. According to Brown (2000), HDG Inc., pseudonym
of a large multinational corporation, devotes approximately 11 full-time employees
to foreign exchange risk management: four in US-based foreign exchange group, two
regional treasury managers, one senior management, two in treasury accounting, and
two in support group. The Foreign Exchange Management Committee in HDG is
composed of high rank officers, including the Chief Financial Officer, Corporate Con-
troller, Treasurer, regional Vice-Presidents (America, Asia-Pacific, Europe, Japan),
and the Manager of Foreign Exchange. As so many parties across the organizational
chart in a corporation are involved in risk management, a risk management program
that optimally organizes relevant parties’ activities is in demand.

An unorganized or ill-organized risk management program may result in two
undesirable consequences: underhedging or overhedging. In the case of underhedging,
the corporation remains exposed to the down side of certain risk factors, which will
cause shareholders to suffer serious loss in value if the exposed risk factors happen
to take their down sides in future. In the case of overhedging, the corporation

buys unnecessary exposure to the up side of certain risk factors, which reduces
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shareholders’ value due to transaction costs in financial markets.!An optimal risk
management program should be effective in controlling both underhedging and
overhedging.

A risk management program faces two primary issues. First, it needs to identify
who makes hedging decisions. A multidivisional corporation either lets divisions
manage risk at the division level or lets the corporate headquarters make decisions
at the corporate level. The choice between decentralization and centralization
determines roles and responsibilities of each party involved in risk management.
Second, a risk management program should be effective in helping the corporation
fully use its internal fund. Since external fund is costly, a corporation maximizes its
value by making best use of internal fund. The difficulty a multidivisional corporation
faces in using internal fund is that no one in the corporation knows precisely the
sum of internal fund the corporation as a whole will have. Performance of a risk
management program crucially depends on how well it overcomes the difficulty of
gathering information on internal fund.

Existing risk management programs in large corporations fall into two categories
according to a survey by the Financial Executives Research Foundation, which is
documented in Davis and Militello (1995). Companies in the first category, including
General Electric, Mobil, Union Carbide, etc., delegate hedging decisions to divisions.
Companies in the second category, including Eli Lilly, Applied Material, etc., make
hedging decisions at the corporate level. Even though the survey does not reveal how
corporations gather information on internal fund, managers being surveyed consider
it an important issue. This is evident in the following principal concerns they have

expressed: how to gather exposure data, how to ensure accuracy of exposure data,

!The total transaction cost a corporation spends on hedging nowadays is a noticeable sum.
Brown (2000) estimates that HDG Inc. spends roughly $2.3 million on transaction costs annually
for managing its foreign exchange risk. Since HDG has exposure to other risks as well, including
interest rate risk, operational risk, counterparty credit risk, etc., the total transaction costs HDG
spends on managing risk is certainly greater than $2.3 million.
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and how to establish controls and accountability (Page 7 in Davis and Militello
(1995)).

In this paper, we set up a theoretical framework to analyze the problem of
designing a risk management program. We treat risk management in a more general
sense that corporations use hedging not only to avoid financial distress but also to
secure financing for future investments. We demonstrate that neither of the two
existing categories of risk management program is optimal; they either underhedge
or overhedge. We propose a third kind of risk management program and show that

it is better than existing ones.

The rest of this paper is organized as follows. In Section 2.2, we state the
problem of designing a risk management program at a multidivisional corporation.
In Section 2.3, we formulate a theoretical framework under which performance of
four risk management programs are studied. Section 2.4 concludes the paper with

summary and discussion.
2.2 Problem Description

In this section, we state the problem of designing a risk management program.
Our model concerns corporate decisions at two time spots, labeled as time 0 and
time 1 respectively. Time 0 is present while time 1 is future. Throughout the paper,
we assume the discount rate between time 0 and time 1 is zero. At time 1, the world
is in one and only one of N possible states, which are indexed by {1,2,---,N}. We
assume that there exists a risk neutral probability distribution p = (p1,p2,---,o~n)’
of these states, where p;. is the probability that the world is in the kth state at time 1.

We consider a multidivisional corporation with M divisions. Let v; be division

J’s operating income at time 1 for j = 1,2,---, M. The distribution of v; is given by
vj1 if the world is in state 1;
Vj2 if the world is in state 2;
v i=
UiN if the world is in state N,
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We assume that the optimal investment of division 7 at time 1 is 7;i if the world
is in state k.2 Let n; = (nj1,7j2, -, 7;~)" be division j’s optimal investment for
every state of time 1. A division has two sources of funds to finance its investment at
time 1: operating income from existing production projects and funds acquired from
external financial markets. The former is called internal fund and the latter external
fund. For example, if the world is in state k£ at time 1, then division j’s operating
income is equal to vj; and its optimal investment is in the amount of 7;.. If the
operating income is greater than optimal investment, i.e., vjz > 7;x, the division is
able to finance its investment via internal fund only; otherwise, the division has to
acquire external fund. Since external fund is costly, a division always prefers to have
sufficient internal fund in every state. Unfortunately, the distribution of operating
income does not always match that of optimal investment. While a division has
greater operating income than optimal investment in some states of the world, it
has less in other states. To finance investment using as much of its internal fund
as possible, a division needs to shift operating income across states so as to match
investment needs.

We assume that a complete financial market exists that enables divisions to shift
operating income across states of the world.® In a complete financial markets, there

are N primitive Arrow securities, one for each state of the world (Arrow (1964)). The

2The optimal investment is exogenously determined. It captures essence of existing theories
on why firms hedge. Firms that hedge to reduce the volatility of its taxable income (Smith and
Stulz (1985)) will prefer 7751 = nj2 = --- = njn. Firms that hedge to reduce the probability of
bankruptcy or financial distress (Stulz (1996), Ross (1997) and Leland (1998)) will prefer njx > dji
for k=1,2,---,N, where dj; equals a firm’s anticipated financial obligation in state k. Firms that
hedge to avoid raising funds in external capital markets (Froot, Scharfstein and Stein (1993)) will
prefer large n;x in state £ when attractive investment opportunities are likely to exist but external
funds are hard to get. Firms that hedge to prove their superior investment projects or management
ability to the public (DeMarzo and Duffie (1991), Breeden and Viswananthan (1996)) will prefer
large n; in state £ when most of their competitors do poorly.

3The assumption of a complete financial market is more plausible now than 20 years ago because
of recent innovations in financial products and advances in financial engineering. See Merton (1992)
for a review of how financial innovations improve economic performance as well as complete the
financial markets.
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Arrow security of state k, also called the kth Arrow security, is a contract
between buyer and seller, which entitles the buyer the right to receive one unit of
money from the seller if the world is in state k£ at time 1 and nothing if in any other
state. The seller then receives a fixed price at time O for being willing to give one
unit of money to the buyer should the world be in state k£ at time 1. Under the risk
neutral probability distribution p, the risk neutral equilibrium price of a kth Arrow
security is equal to the probability of the kth state occurring, p.. However, because
there exist transaction costs in real-world financial markets, actual transaction prices
are different from the theoretical equilibrium price. Let b, be the buy price a buyer
pays and s, the sell price a seller receives for one kth Arrow security in the financial
market for £ = 1,2;---, N. Because of transaction costs, the following relationship

generally holds in real-world financial markets
br >pr >5 >0, for £=1,2,---,N .

Sources of transaction cost include cost of maintaining intermediacy by financial
intermediaries, cost of credit risk, to name a few.

The following example illustrates how operating income of time 1 is shifted across
states via Arrow security. Suppose a division buys one kth Arrow security at the
price of by at time 0. Then the division will receive one unit of money if the world
is in state k£ at time 1 and zero if in any other state. Consequently, the division’s
disposable internal fund increases by the amount of 1 — b, in state k£ and decreases
by the amount of b; in any other state. The example suggests that a division whose
operating income is less than its optimal investment in state k£ at time 1 can raise
its disposable internal fund of state £ by buying a sufficient number of the kth
Arrow security. The division acquires external fund at higher cost only when it faces
shortage of internal fund in some states no matter how it shifts operating income.

In a multidivisional corporation, since divisions are generally in different lines of

business, involving different processes, products, customers, geographical locations,

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



etc., their operating incomes are not perfectly correlated with each other. In any state
of the world, some divisions may be short of internal fund while other divisions may
have more internal fund than they need. Divisions of the former type are called deficit
divisions and those of the latter type are surplus divisions. The potential that one
division’s surplus offsets other divisions’ deficit makes it attractive to let the corporate
headquarters make hedging and financing decisions based on consolidated operating
income and optimal investment of the whole corporation. Let © = (u1, u2,---, un) be
the corporate operating income of time 1, which is the sum of all divisional operating
incomes, i.e., up = v+ v+ - +uyp fork=1,2,---,N. Let € = (&1,82, -, &n)'
be the corporate optimal investment of time 1, which is the sum of all divisional
optimal investments, i.e., & = M+ ok +--- +ur for k=1,2,--- | N.

To make central decisions, headquarters needs to know corporate operating
income and corporate optimal investment. Unfortunately, exact figures of u and
& are not readily available to headquarters. In a multidivisional corporation, since
only divisions know their operating income and optimal investment, headquarters has
to rely on divisions’ reports to estimate u and £. The estimated figures are generally
imprecise due to information loss in the reporting process and divisions’ incentives to
report biased figures in their favor. We will show that bias in the estimated figures
reduces benefits of centralization in managing risk in Section 2.3.3.

In next section, we present a theoretical formulation of the problem of making
optimal hedging and financing decisions and examine performance of four organiza-

tional programs that a multidivisional corporation can adopt to solve the problem.

2.3 Theoretical Model and Analysis

In the first subsection, we study a centralization program for risk management
under the ideal assumption that the corporate headquarters has perfect information

regarding corporate operating income u and corporate optimal investment £. We
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then examine three other practical risk management programs in following subsec-

tions and compare them with the ideal centralization program.
2.3.1 Ideal Centralization

In this subsection, we make the ideal assumption that the corporate headquarters
knows corporate operating income u and corporate optimal investment £. The
corporation’s objective is to maximize its expected net present value.

The corporation’s value at time 1 has four components: corporate operating
income, cash flow resulting from hedging transactions, expenses of acquiring external
fund, and expected gain of investment made at time 1. Suppose the world is in state
k at time 1. The first component is operating income, equal to u;. To explicitly
write down the second component, let ¢¢ and ¢f be quantities of the kth Arrow
security the corporation buys and sells in the financial market at time 0, respectively.
Both gi and ¢} take only nonnegative values. By definition of Arrow security, the
corporation’s buying and selling positions in the kth Arrow security generates cash
flow of g2 — qi in state k at time 1. In addition, the second component also includes
SN (—big? + siq?), where TN, —b;q® is what the corporation pays at time 0 for
buying Arrow securities and 3% ; s;¢f is what the corporation receives at time 0 for
selling Arrow securities. The second component of the corporation’s net value is thus
equal to —gf + SN, siqg? + ¢ — SN, b:g?. Let z be the amount of external fund
the corporation acquires in state & and ¢, be the unit cost of external fund in state
k. The third component is then equal to cgzr. Suppose that the corporation makes
optimal investment & in state k. Let r; be the expected discounted cash flow from
the future beyond time 1 that is a result of one unit investment made in state &
at time 1. Then the fourth component, the expected gain of investment made at
time 1, is equal to m¢&;. Putting the four components together, we know that the

corporation’s value in state k is equal to
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N N
we+qp — Y begp — gL + D 5kq} — ckzk + Tibk - (2-1)

=1 =1
Let ¢* = (q,45,---,4%) be the vector containing quantities of Arrow secu-
rities the corporation buys for every state, ¢° = (q¢f,¢3,---,q%)" be the vector

containing quantities of Arrow securities the corporation sells for every state, and
z = (21,22, -+, 2n)" be the vector containing external fund the corporation acquires
for every state. The corporation’s expected net present value at time 0 is a function
of g%, ¢, and z. Let f(q%, q°, z) be the corporation’s expected net present value at
time 0. By taking expectation of (2.1) under the risk neutral probability distribution,

we obtain f(gq°, g*, z) as follows

N N N
fleha%z) = 3 m [uk +qp =D bt — G+ Y sigf — crze + Tk&k]
k=1 =1 =1
N N 5 N N 5
= Y pruk+ D pegr — ( pk) (Z biqi)
k=1 k=1 k=1 =1
N N N N N
— > pegi + (Z p&) (Z s:q; ) = prcrzi + Y Petibe
k=1 k=1 =1 k=1 k=1
N N
= E(u)+ > perele — Y [(bk — pe)ah + (P — Sk)qi + pkckzk] (2.2)
k=1 k=1

To maximize its expected net present value, the corporation solves the following
optimization problem,

maximize f(q", ¢’ 2) (2-32)

subject to

N N
u+qg =S bk -+ D sl > &

=1 =1
N N
Ut g —D b — G+ stz > &
1=1 =1
(2.3b)
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N N
un +an — D b — g+ > sigl +av > En

i=1 =1
f(¢*,q°, z) > E(u) (2.3¢c)
>0, ¢¢>0, z>0. (2.3d)

Constraint (2.3b) is a set of budget constraints, one for each state of the world at
time 1. Take the budget constraint of state 1 as an example. On the left hand side is
the total amount of disposable fund the corporation has in state 1, which is the sum
of operating income, cash flow from hedging positions, and external fund. On the
right hand side is the corporate optimal investment. The constraint requires that the
left hand side be greater than or equal to the right hand side so that the corporation
has enough disposable fund to make optimal investment in state 1. Constraint (2.3c)
is a rational constraint, where E(u) is the expected value of the corporate operating
income. If the corporation does not make any investment at time 1, its expected value
will be E(u).* We call E(u) the reservation value of the corporation. The rational
constraint (2.3c) emphasizes that a rational corporation does not take extra effort to
reduce its value. Constraint (2.3d) requires all choice variables to be nonnegative.
Since the objective function and all constraints are linear functions of choice
variables, the optimization problem (2.3) is a linear programming problem. Let
Q = {(¢%q°,2) : ¢°,q°,and z satisfy constraints (2.3b), (2.3c) and (2.3d).} be the
collection of feasible solutions. It is easy to verify that constraint (2.3c) is equivalent

to the following inequality

N N
> [(bk — pk)ak + (px — sk)qi +pkckzk] <> pereb - (2.4)
k=1 k=1

Because b; > pr > s > 0 and ¢ > 0, choice variables q°, ¢°, and z are bounded from
above according to inequality (2.4). In addition, since ¢, ¢°, and z are nonnegative

the feasible solution space € is thus bounded. Furthermore, equation (2.2) shows

4If the corporation does not make any investment at time 1, it will not take any hedging position
at time 0 nor acquire any external fund at time 1.
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that the objective function is decreasing in choice variables (g%, q°, z), and that
the maximum value of the objective function is equal to E(u) + SN | piriée when
q®* = ¢° = z = 0. But the solution ¢* = q* = z = 0 is not necessarily a feasible
solution because it may not satisfy constraint (2.3b).

In this paper, we assume that 2 is not empty. The assumption means that the
corporation can do better with investing at time 1 than without. It is well known
that when the feasible solution space is bounded and not empty, there exists an
optimal feasible solution to a linear programming problem. The following proposition
gives certain properties of an optimal feasible solution to the linear programming

problem (2.3).

Proposition 2.1 Let (¢*°,¢*,z") = (g%, ---, ¢}; a1, - -, a3 21, - - 2}) be an opti-

mal feasible solution. The optimal feasible solution has the following properties.
1. The optimal hedging positions qg’ and q}® can not be both positive in any state k.
2. If qi® > 0 or z; > 0, then the bmdget constraint of state k in (2.3b) is binding.

3. If qi° > 0 for a certain state Kk, then there must exist another state | whose

budget constraint 1s binding.

4. If z; > 0 for a certain state k and the inequality, prck > (pr — s1)/si, holds for

any statel =1,2,---, N, then all budget constraints is binding.

5. If none of the N budget constraints is binding, then q}* = qt® = 2z} = 0 for all
k=1,2,---,N.

Remark 2.1 The first property suggests that, to maximize its expected net present
value, the corporation either buys or sells Arrow security of a particular state, but
does not engage in both at the same time. Buying one kth Arrow security effectively

shifts operating income from all other states to state k, while selling one kth Arrow
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security effectively distributes operating income of state k£ evenly to all states. Since
both buying and selling incur transaction cost, it is not optimal for the corporation
to increase its disposable fund of state k& by buying the kth Arrow security and then
shift fund from state k& to some deficit states by selling the kth Arrow security. The
second property suggests that the corporation buys the kth Arrow security or acquires
external fund in state k£ only when it could not meet the optimal investment of state
k otherwise. The third property suggests that the corporation sells the kth Arrow
security only when it could not meet the optimal investment in some other states
otherwise. In the condition of the fourth property, pick is the cost of one unit external
fund acquired in state k&, and (p; — s;) /s; measures the proportion of transaction cost
incurred in selling one [th Arrow security to the sell price. Since the cost of external
fund is usually much higher than transaction cost, the condition is satisfied for any
state k and [. The fourth property implies that, under the condition that the cost of
external fund is higher than the cost of shifting operating income across states via
Arrow securities, the corporation will acquire external fund only when its operating
income is not enough to meet its optimal investments no matter how the corporation

shifts operating income.

Proof of Proposition 2.1:
Let w; be the corporation’s disposable fund in state ¢ under the optimal feasible

solution (g*%, ¢**, z*), i.e.,
N N
wy Su+q; — ;b,-q,”" —q + 231"1:8 +z -
Let f(g*%, q**, z*) be the corporation’s optimal expected net present value.

To prove the first property, suppose ¢;’ > 0 for state k. We will show that if
gi® > 0 then the solution is not optimal. Suppose ¢ > 0. Let A = min{q}*, q;%},
then A > 0. If the corporation decreases both g}* and q;® by A then the corporation’s
disposable fund in any state t becomes w; + (bx — sx)A and the corporation expected
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net present value is equal to f(q*®,q**,2*) + (br — sk)A. Since by > s, we thus
obtain a better solution by substituting ¢f* — A for ¢¢° and qt® — A for qzb. This
contradicts to the assumption that ¢f* and qt® are optimal. Therefore ¢f® = 0 when
gx® > 0. It also implies that g;* = 0 when ¢{* > 0. We thus prove that ¢;* and g}*
can not both be positive in any state k.

Next, we shall prove the second property. Suppose gq® > 0 for any state
k. Suppose the budget constraint of state k£ is not binding, ie., wy > &. Let
A = (& — w})/2, then A > 0. By substituting ¢;® — A for ¢f® in the optimal
solution, we reduce the disposable fund of state £ from wi to wi — (1 — bx)A and
increase the disposable fund of any other state ¢ from w; to w; +bA. Consequently,
budget constraints of all states remain satisfied. More importantly, the substitution
increases the objective function by b;A. It means that the substitution results in a
better solution, which contradicts to the assumption that g} is optimal. Therefore
the budget constraint of state k& is binding. Similarly, we can prove that if zf > 0
then the budget constraint of state &£ is binding.

Next, we shall prove the third property. Suppose ¢;* > 0 for any state k. We want
to show that there must be another state whose budget constraint is binding. Suppose
budget constraints of all states other than state k£ are not binding, i.e., w; > & for
any state | where [ # k. Let A = min{wf —§ :{ =1,2,---,N, and [ # k}, then
A > 0. By substituting ¢;°* — A for ¢f* in the optimal solution, we increase the
disposable fund of state k from wf to w; + (1 — s¢)A and decrease the disposable
fund of any other state ¢ from w; to w; + s A. By definition of A, budget constraints
of all states remain satisfied. More importantly, the substitution also increases the
objective function by siA. It means that the substitution results in a better solution,
which contradicts to the assumption that ¢;° is optimal. Therefore there must exist
a state whose budget constraint is binding.

Next, we shall prove the fourth property. Suppose z; > 0 for state k. According to

the second property, the budget constraint of state & is binding. Suppose the budget
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constraint of another state [ is not binding, i.e., wf > &. Let A = (w] — &)/2,
then A > 0. We then substitute ¢;* + A for ¢/* and z; — s;A for 2{ in the optimal
solution. With the substitution, the disposable fund of state £ does not change,
the disposable fund of state ! is still greater than &, and the disposable fund of
any other state increases by s;A. Consequently, budget constraints are still satisfied
for all states. The value of the objective function after the substitution is equal
to f(q'%,q*, 2*) + preesiA — (ot — s1)A, where prcrsiA is due to change in z{ and
—(p1 — s1)A is due to change in ¢;°. Under the assumption that prcx > (px — sk)/s1,
the substitution results in a better solution, which contradicts to the assumption
that (g*%, ¢**, 2*) is optimal. Therefore the budget constraint of state { is binding.

At last, the fifth property can be derived from the second and the third properties.
If none of the budget constraint is binding, then we know that, for any state k,
qt® = zf = 0 according to the third property and ¢f* = 0 according to the second
property. O

In summary of this section, we set up a theoretical model in which the corporate
headquarters solves the linear programming problem (2.3) to obtain optimal hedging
and financing decisions, assuming that headquarters knows corporate operating
income u and corporate optimal investment £. Properties of optimal decisions
are studied and summarized in Proposition (2.1). In the following subsections, we
discuss three risk management programs that operate under the reality that each
division knows its own operating income and optimal investment while no one in the
corporation has perfect information about corporate operating income and corporate

optimal investment.
2.3.2 Uncoordinated Decentralization

In this subsection, we study an uncoordinated decentralization program for risk

management. Under such a program, divisions make hedging and financing decisions
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individually. Each division solves its own optimization problem as if it is a stand-alone
corporation.

Take division j as an example. Let g2 = (¢};,¢%, --,qy)" be the vector
containing quantities of Arrow securities division j buys for every state, q; =
(@71, Qs+~ »¢3n)" be the vector containing quantities of Arrow securities division
7 sells for every state, and z; = (z;1, 22, -, 2jn)" be the vector containing external
fund division j acquires for every state. Then the expected net present value
of division j at time O, fj(q;’-,qj, z;), has the following expression, similar to

equation (2.2),

N N

Fi(@5: 45, 27) = E(0;)+ D peremjs— [(bk — Pr) G + (Pr — Se) i + Pkckzjk] (2.5)
k=1 k=1

where v; = (vj1,vj2,---,vjn) is division j’s operating income at time 1, and

n; = (nj1,Mj2,---,Mjn)" is division j’s optimal investment at time 1. Note that

we assume the buy price b; and the sell price s of Arrow securities, the unit cost of
external fund ¢, and the unit gain of investment 7, are the same to all divisions as
well as the corporation.

Division j solves the following linear programming problem to maximize its

expected net present value,
maximize f; (qf», q;,%;5) (2.6a)
subject to

N N
i g — D b — g+ Y sightzin > ma

, X N
Uiz + o — D bighi — @la+ D siqhi+zi2 = 72
i=1 =1
(2.6b)
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N N
Uin + Q;ZN -3 bngi — N+ dosighi+zin = My

=1 =1
fi(d}, &, z;) = E(v;) (2.6¢)
g; >0, ¢;>0, z;>0. (2.6d)

Let Q; = {(q% a3, 2;) : 4%, q%, and z; satisfy constraints (2.6b), (2.6c) and (2.6d)}
be the feasible solution space to the optimization problem of division j. We
assume that the feasible solution space 2; is not empty for any division j with
j = 1,2,---,M. The assumption means that all divisions have profitable future
investment opportunities on their own. Nonprofitable divisions have been cut out
from the corporation.

The following proposition compares the uncoordinated decentralization program

with the ideal centralization program.

Proposition 2.2 Let (g%

3,45, 23) be an optimal solution to the optimization prob-

lem (2.6) of division j for j = 1,2,---, M, and (q*%, ¢**, 2*) be an optimal solution
to the optimization problem (2.8) of the corporation under the ideal centralization

program. We then have
M
Z f](Q;b7 q;sa Z;) < f(q'b) qta’ Z*) .
=1

Proof of Proposition 2.2:
Note that corporate operating income is the sum of divisional operating income,
ie,u= Ej”il v;, and corporate investment is the sum of divisional investment, i.e.,

&= }:j”il 77;- We then have the following results
Z b
_Zlff(Q} 45", %7)
J:

M N N
= > {E(v,—) + D PRTENE — Y [(bk — ) gk + (Pe — k) + PkaZ}k] }
=1 k=1 k=1
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N M
= E(Z v;) + Z(Pk"'k Zﬂ]’c) Z Z [(bk _pk)q;g + (P —

7=1 7=1 k=1j=1
N

Sk) @} + Peck ]

M M M
= E(u)+ ZPkT‘kEk ->° [(bk —De) Y. q},’i + Dk — sk) D @i + Prce D _ 2k
=L =1 i=t

k=1 k=1

M
= f(Zlq;”,Zq, ,Zz ) -
i= i= =1

It is easy to verify that (72, q}® E”ﬁlq ¥, z}) satisfies constraints (2.3b),
(2.3¢), and (2.3d). Therefore (Z 1M, g7, T, 27) is a feasible solution

to the optimization problem (2.3). Since (g*%, ¢**, 2*) is the optimal solution to

problem (2.3) we obtain

M M M
Z filaar,z5) = FO_ a5 g% Y- z5) < fla. e, 2") -
=1 Jj=1 j=1

Proposition 2.2 shows that the optimal corporate expected net present value under
the uncoordinated decentralization program is no more than that under the ideal cen-
tralization program. From the proof of the proposition, (E]_l qJ , 21_1 q;,
is the sum of all divisions’ optimal hedging and financing positions under the
uncoordinated decentralization program. A necessary condition for the uncoordi-

nated decentralization program to achieve the same maximum value as the ideal

centralization program is that (E .q ]"i 1 45 M

Proposition 2.1. Take Property 1 in Proposition 2.1 as an example.

demands that for any state k, if E =1 qu > 0, then Z =195k =

However, since divisions’ operating incomes are not correlated with each other in

general, it is usually the case that, in any state of the world, some divisions are in

M
4
le

~1 Z;) satisfies all properties in
Property 1

0, and wvice versa.

surplus while others are in deficit. As a result, Z 1458 and E i—1 4% are usually both

positive for many states of the world, which means that the corporation as a whole

buys more Arrow securities than necessary. That is, the corporation overhedges.

Since the corporation pays transaction cost for each Arrow security it buys or sells,

overhedging reduces the corporation’s value due to excessive transaction costs.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.3 Real-World Centralization

In Section 2.3.1, we study a centralized risk management program under the
ideal assumption that the corporate headquaxters knows exact figures of corporate
operating income and corporate optimal investment. In reality, headquarters does
not have first-hand knowledge of these figures and relies on divisions’ reports to
estimate them. The estimated figures can be imprecise for three reasons.

First, since headquarters is able to handle only a limited amount of information,
it generally asks each division to report aggregate figures of its operating income and
optimal investment. The restriction on the armount of information being transfered
leads to loss of information, which then results in bias in estimated figures at
headquarters.

Secondly, under central decision making, -divisions have disincentives to collect
information. When there is no direct reward for reporting correct information
under centralization, it is not beneficial for divisions to engage in costly information
collection. Instead, divisions tend to report handy figures, which may not be accurate
at all.

Thirdly, even if divisions have accurate information, they have incentives to report
biased figures. Divisions are managed by ecomomic agents who maximize their own
benefits. Since the reported figures determine how much contribution each division
makes to corporate operating income and how much fund each division gets for future
investment, divisions have incentives to report biased figures in their favor. In the

following, we analyze how imprecise estimates affect performance of the centralization

program.
Let @ = (4;,4s,---,%n) be headquartexs’ estimates of corporate operating
income for every state of the world, and & = (£,&,---,&éx) be headquarters’

estimates of optimal investment for every state of the world. The corporation’s

expected net present value with imprecise estirnates, f(g*, @, z), is then equal to
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N N

F(@,3°,2) =E@) + 3. perile — 3 [(be — P& + (P — s0)@ + Precez] » (2.7)
k=1 k=1

where @® = (g8, 3,---,3%)" is the vector containing quantities of state-contingent

Arrow securities the corporation buys at time 0, ¢* = (g, 4, - -, %) is the vector

containing quantities of state-contingent Arrow securities the corporation sells at

time 0, and 2 = (21, 22,---,2n)" is the vector containing state-contingent external
fund the corporation acquires at time 1.

To maximize its expected net present value, the corporation solves the following

optimization problem,

maximize f(g°, @, 2) (2.82)

subject to

N N
L+ —Y b —F+D 3 +5 > &

=1 i=1
N N _
Ub+H—Y bl -G+ si@i+n > &
=1 =1
(2.8b)
N N _
N + qx =Y b -G+ si@ +EIn > &N
i=1 =1
f(@.q,2) > E(a) (2.8¢)
g°>0, >0, 2>0. (2.8d)

The above optimization problem (2.8) is the same as the linear programming
problem (2.3) except that the parameters % and £ used in problem (2.8) are estimates
of the parameters u and £ used in problem (2.3). Let (g*®,@"*,2*) be an optimal
solution to problem (2.8) and (g%, ¢**, z*) be an optimal solution to problem (2.3).
Below we discuss to what extent bias in the estimated parameters, # and €, affects
the corporation’s hedging and financing decisions.

When the corporation has sufficient operating income to meet its optimal invest-

ment in every state of the world, small bias in estimates @ and € does not have any
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impact. This is because when operating income is sufficient in every state, i.e. ux > &
for all k =1,2,---, N, the optimal solution to problem (2.3) is ¢** = ¢** = z* = 0.
As long as the estimates @ and £ satisfy @ > & for all k = 1,2,---, N, the optimal
solution to problem (2.8) will be the same §*® = g** = z* = 0.

However, when (g*°, g**, 2*) is not zero, estimation error in @ and £ reduces the
corporation’s value. According to Property 5 in Proposition 2.1, when (g*¢, @**, z*)
is not zero, some inequality constraints in (2.8b) are binding. Suppose the constraint
of state [ is binding, i.e.,

N N

ﬁz+@'b—zbi(7$b—6f+23i§3+ff =§.

i=1 i=1
If § — @ < & — u, then the corporation underhedges in state . This is because
when state [ occurs at time 1, the corporation’s disposable fund is equal to u; + g7 —
SN 6@t — @ + =N, 5:3r5 + z7, which is less than the optimal investment &. This
forces the corporation to acquire additional external fund at time 1. It becomes even
worse if g;° > 0, because the corporation then has to acquire external fund to pay
holders of the [th Arrow securities it has sold at time 0. Underhedging reduces the
corporation’s value because of the high cost of obtaining external fund at time 1.

On the other hand, if & — % > & — w;, then the corporation overhedges in state
[, which means that the corporation has more disposable fund than it needs for
investment. The corporation suffers loss in value if §;® > 0, because the corporation
has bought more Arrow securities for state [ than necessary. Since the corporation
takes a charge in the amount of transaction cost for each Arrow security it buys,
overhedging reduces the corporation’s value by excessive transaction cost.

Although loss in the corporation’s value due to bias in estimated operating
income and optimal investment can not be written out in an explicit formula, it
can be demonstrated numerically. Empirical evidence presented in Berger and
Ofek (1994) shows that the market value of a multidivisional corporation appears

to be approximately 13-15% less than the sum of its divisions valued separately.
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They argue that this diversification discount results from misallocation of capital
and inefficient cross-subsidies between divisions in the multidivisional corporation.
Our analysis suggests that the existence of a diversification discount may be due
to bias in information that the corporate headquarters uses in making centralized
decisions. Even though headquarters has no intention for cross-subsidization of
poorly-performing divisions by better-performing divisions, inefficient cross-subsidies

take place due to inaccurate inputs to headquarters’ decision-making process.

2.3.4 Coordinated Decentralization

In Section 2.3.2, an uncoordinated decentralization is discussed, under which
each division acts as a stand-alone firm who deals only with external financial
institutions for hedging and financing transactions, and the corporate headquarters
offers no help in divisions’ decision-making. As a result, divisions do not benefit
from potential offsetting cash flows in other peer divisions, and the corporation as
a whole overhedges. In this subsection, we propose a new kind of decentralized
risk management program. In the new program, divisions make their own hedging
and financing decisions individually just like in the uncoordinated decentralization
program, but headquarters organizes an internal market that helps divisions exploit
offsetting cash flows in peer divisions.

The reason why an internal market enables divisions to exploit offsetting cash
flows in peer divisions is that there is no transaction cost for transactions on the
internal market. A major component of transaction costs on external financial
markets is the cost of credit risk. External financial institutions are in general
suspicious to a firm's report on its financial strength and are afraid that the firm
defaults financial contracts they take part in. To protect themselves from default
risk, they usually charge a premium over fair price of any financial contract. The
premium is the cost of credit risk. Within a multidivisional corporation, divisions are

bound to be honest with each other by their desire to stay under the same roof and
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the corporate headquarters serves as a clearinghouse in the internal market, which
effectively eliminates default risk of internal transactions.

To facilitate internal transactions, the corporate headquarters sets internal prices
after investigating prices on external financial markets. Let ; be the internal price
of the kth Arrow security for £ = 1,2,---, N. Then the internal price ought to
be chosen such that by > 6 > pr > si > 0, where b, is the external buy price,
s 1s the external sell price, and p; is the risk neutral equilibrium price. Divisions
who wants to buy Arrow securities pay lower internal price é; than the external buy
price b, and divisions who wants to sell receives higher internal price §; than the
external sell price s;. Therefore, both buying divisions and selling divisions will look
for counterparties in internal market before in external financial markets.

The sequence of actions that divisions take to make hedging and financing
decisions under the coordinated decentralization program is as follows. Take division

j as an example. At time 0, division j solves the following linear programming

problem,
maximize f;(q},q], z;) (2.9a)
subject to
, N N
vj1 + G — E biqgi - ‘1;1 + Z Siq;; +2z;1 2 M
=1 =1
, N N
Uz + @l — D bighi — o + D siqli + 22 = Mo
i=1 i=1
(2.9b)
\ N N
Uin + Gy — D bigi — G+ D sigh+ N = TN
fi(g5, 95> %) = E(v;) (2.9¢)
g¢>0, ¢;>0, z;>0. (2.9d)
This optimization problem is the same as the optimization problem (2.6) division
j would solve under the uncoordinated decentralization program. Let (qJ‘-” q;°, z})
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be an optimal solution division j obtains by solving the above linear programming
problem. Division j then posts a request in the internal market to buy Arrow
securities in quantities of q}b and sell Arrow securities in quantities of q;°. Once
all divisions post their desired quantities, a schedule of supply and demand of each
Arrow security becomes to exist in the internal market. Since there are N Arrow
securities, there will be N schedules of supply and demand. Divisions clear the
internal market according to these schedules.

In case that supply and demand do not match exactly on a schedule, divisions
follow a pro rata rule to clear the internal market. Take the schedule of the kth Arrow
security as an example. Suppose that supply and demand are equal to Zj“il g;r and
Zjﬂil q},’:, respectively, where ¢;; and q},’; are division j’s optimal selling and buying
positions in the kth Arrow security, respectively. Let p be the ratio of supply to
demand. When supply is less than demand, i.e., p < 1, the pro rata rule specifies
that each buying division gets only a proportion of what it desires. For example,
if division j is in demand of the kth Arrow security, i.e., q;,'; > 0, then division j
gets only pq}‘,’; from the internal market.> When supply is more than demand, i.e.,
rho > 1, the pro rata rule specifies that each selling division sells only a proportion
of what it can provide. For example, if division j wants to sell gf > 0, then division
7 sells only g;Z/p in the internal market.

Once the internal market clears, let §; = {§j1,dj2, -, din} be the position
division j takes in each Arrow security in the internal market. If §;x > 0, division
J buys the kth Arrow security in quantity of §jz. If gjx < 0, division j sells the
kth Arrow security in quantity of —§jz. Since cash flows from these internal Arrow
securities changes division j’'s expected net present value and the distribution of
internal fund at time 1, division j needs to solve a second optimization problem to
compute additional hedging and financing it has to obtain from external financial

markets.

5 According to Property 1 in Proposition 2.1, qjx =0 when q;z > 0.
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Let (q;?, g, z;) be additional hedging and financing position division j takes in
external financial markets. Then division j’s disposable fund in state & is equal to
N . N o N
vjk + Gik — 2 0idii + G — X bigp — @i + D Siqh + Zjk > Mjke
i=1 =1 =1
and division j’s value in state & is equal to
N , N N
Uik + Gk — Z 0:Gji + Qi — Z b.-q,—,- - q,’ik + Z siQ;i — CkZjk + TETjk »
=1 =1 =1
where vj; is division j’s operating income, §jx — SN | 8:4;: represents cash flow from
division j’s positions in internal Arrow securities, q;?k -, b,-qfi — G + Ol 8iq3;
represents cash flow from division j’s positions in external Arrow securities, ciz;; is
expenses of acquiring external fund, and rx7n;; is expected gain of investment made
in state k£ at time 1. By taking expectation of division j’s value at time 1 under the
risk neutral probability distribution, we can write division j’s expected net present

value as follows

fidd a5 z) = (2.10)
N N N b
E(v;) — Y (8 ~ Pr)di + D pariiie — O [(bk — Pe) @l + (e — sk) gk + Prczie] -
k=1 k=1 k=1

The second optimization problem is then formulated as follows
maximize fj(qg, q;, z;) (2.11a)
subject to

N N N
vit + i1 — D 0+ g — D bigi — gh + stz > mn

i=1 =1 =1
N . N N
via + Gjo — O 8iGji + Qo — Y bigj; — gi2 + D osighi+zi2 > 72
=1 i=1 i=1
(2.11b)
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N N N
Uin +Gin — D 6:Gji + Gov — D bidi — Cn + D Sidhi +zin > Wi

=1 =1 =1
fi(d}. €3, z7) = E(v;) (2.11c)
q;>0, ¢;>0, z;>0. (2.11d)

As the last step of the decision-making process, divisions take optimal hedging
and financing positions given by the second optimization with external financial
institutions.® Even though divisions might still be able to find internal offsetting
supply or demand with a second round of internal trading, the potential gain would
be small because most offsetting has occurred in the first round of internal trading.

In the following, we compare the coordinated decentralization program with the
uncoordinated decentralization program and the real-world centralization program.
The coordinated decentralization program is evidently better than the uncoordinated
decentralization program. Under the coordinated decentralization program, divisions
have opportunity to trade Arrow securities in the internal market. For divisions who
wants to sell Arrow security, internal trades increase their value because they receive
higher internal price than external price. For divisions who wants to buy Arrow
security, internal trades also increase their value because they pay lower internal
price than external price. The internal market helps all divisions achieve higher
values than under the uncoordinated decentralization program.

The coordinated decentralization program is better than the real-world central-
ization program for two reasons. First, the coordinated decentralization program
avoids value reduction caused by imprecise information. Under the coordinated
decentralization program, divisions make their hedging and financing decisions based
on first-hand knowledge. There is no loss of information during transfer and

no incentives to use biased estimates in solving the optimization problem. In

8The corporation can take advantage of the scale of economy in transaction costs on external
financial markets by asking divisions to report their external hedging and financing positions to
headquarters and letting headquarters to make transactions with external financial institutions on
a larger scale.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



stead, divisions are motivated to use their best knowledge in making decisions.
Secondly, the coordinated decentralization program prevents cross-subsidization of
poorly-performing divisions by better-performing divisions. Under the real-world
centralization program, the corporate headquarters pools operating income from
all divisions, makes firm-wide hedging and financing decisions, and then allocates
capital to divisions for investment purpose. During the process, inefficient cross-
subsidization occurs as an inevitable consequence of imprecise information or other
agency issues. On the contrary, divisions remain to be independent profit centers
under the coordinated decentralization program. Transfer of internal fund between
divisions is accomplished through a market mechanism, which benefits givers of
internal fund and costs receivers. While better-performing divisions afford to acquire
more capital in both internal and external markets, poorly-performing divisions are
prevented from getting excessive capital by cost in both markets. The coordinated
decentralization program creates value for the corporation by the amount that the

inefficient cross-subsidization destroys.

2.4 Summary and Discussion

We set up a theoretical framework to analyze the problem of designing a risk
management program for a multidivisional corporation. Under the framework, the
corporation uses risk management not only to avoid financial distress but also to
secure financing for future investments. It solves a linear programming problem to
make optimal hedging and external financing decisions.

Existing risk management programs in large corporations fall into two categories.
Firms in the first category let divisions make decisions at the division level individ-
ually while firms in the second category ask divisions to report information to the

corporate headquarters and let headquarters make decisions at the corporate level.
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Our analysis shows that firms in the first category tends to overhedge while firms in
the second category either underhedge or overhedge.

We propose a third kind of risk management program. We suggest that corpora-
tions organize an internal market for divisions to trade state-contingent claims among
themselves. We show that such a coordinated decentralization program with internal
market does better than existing ones in maximizing the expected net present value
of the whole corporation.

The concept of internal risk management market is practically implementable.
Recently, the oil giant BP Amoco PLC in Naperville, Ill. has created an internal
market for their divisions to trade permits to emit the greenhouse gases (Ginsburg
(2000)). Since many large corporations have already built or are building internal
computer systems to enable direct communication among divisions, internal risk
management market can be implemented without much extra complications or cost.

The theoretical model we develop in this paper has other applications. It is
realistic enough that management can follow it to make real-world hedging and
financing decisions. It also provides a framework under which management can

compare organizational programs based on simulations.
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