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ABSTRACT

This dissertation contains two essays. The first essay concerns how to build 

a  tracking portfolio of stocks whose return  of investm ent mimics th a t of a  chosen 

investm ent target. Statistically, this task can be accomplished by selecting an 

optim al m odel from constrained linear models. To develop an autom atic procedure 

for building an optim al tracking portfolio, we extend th e  Generalized Information Cri

terion (GIC) to  constrained linear models either w ith  independently and identically 

d istribu ted  random  errors or w ith dependent errors th a t  follow a stationary  Gaussian 

process. T he asym ptotic validity of the extended G IC is established. Simulation 

results show th a t the relative frequency of selecting th e  optim al constrained linear 

model by the  GIC is close to one in finite samples. We apply  the GIC based procedure 

for building an optim al tracking portfolio to the problem  of m easuring the long-term 

im pact of a  corporate event on stock returns and dem onstrate  empirically th a t it 

outperform s two other com peting methods.

The second essay concerns how corporations organize their risk management 

program . We set up a theoretical framework to analyze the  problem  of designing a 

risk m anagem ent program  for m ultidivisional corporations. O ur analysis shows tha t 

risk m anagem ent programs currently  existing in large corporations are not optimal. 

We propose a new risk m anagem ent program  in which the corporate headquarters 

organizes an  internal m arket for divisions to trade state-contingent claims among 

themselves. We show th a t this new program  is b e tte r th a n  existing ones.
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CH APTER 1

BUILDING TRACKING PORTFOLIOS BA SED  
ON A  GENERALIZED INFORM ATION  

CRITERION  

1.1 Introduction

In  a  number of financial research studies, the essential task boils down to  building 

a  tracking portfolio o f stocks whose return  on investm ent m im ic s  th a t of a chosen 

investm ent target. T he following axe two typical exam ples of such studies.

E x a m p le  1.1 Index Fund. The sole business of an  index fund is to m aintain  a 

portfolio of individual stocks such th a t percentage changes in the value of th e  portfolio 

are approximately equal to  those of the chosen index. Success of an index fund 

depends on how closely its portfolio mimics the index. An easy way to  track the 

index is to buy and hold all constituent stocks of the index in the same proportions 

as they  compose the index. It is the easy approach th a t  every index fund manager 

would like to take. However, managers of open-end index funds are frequently forced 

to buy or sell stocks as investors deposit or w ithdraw  their money. They simply can 

no t constantly hold th e  same stocks in the same proportion. W hen they  have to 

ad just their portfolio, they would like to make their new portfolio be one th a t can 

closely track the index.

E x a m p le  1.2 Long-Term Impact of a Corporate Event on Stock Returns. Such 

studies focus on the effect of a  specific corporate event on return of investm ent in

1
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the event firm’s stock over a  time span of several yeaxs after the event has happened. 

A great interest in learning the long-term im pact o f corporate actions has recently 

arisen am ong finance researchers and generated a considerable literature th a t is still 

growing. See Fama (1998) for a summary of the literature and references therein. 

Since the observed post-event return of the event firm ’s stock has been influenced 

by the event, we do not know what the status quo re tu rn  would be if the  event had 

not happened. But in order to learn the event’s im pact, we have to  compare the 

observed post-event retu rn  against the unobservable status quo return . One way to 

estim ate the status quo re tu rn  is to build a portfolio o f other stocks whose retu rn  has 

moved in  the same way as the event firm’s return before the event happened and to 

use the observed post-event return of the portfolio as an estimate. Once we have a 

pre event tracking portfolio, the difference between the observed post-event return 

of the event firm and th a t of the tracking portfolio is a  measure of the event’s effect.

In each of the two examples, a tracking portfolio is to be built given a desired 

target and  a group of other stocks. In fact, every nonem pty subset of these stocks 

can form a portfolio th a t m ay track the target well. There are as m any possible 

tracking portfolios as the num ber of nonempty subsets of these stocks. Among all 

possible portfolios, an ideal tracking portfolio would be such th a t its re tu rn  is equal 

to the ta rg e t’s return in every month. (We use m onth as the time unit for measuring 

investment return in this paper.) In reality, any portfolio will have returns different 

from those of the target. An optimal, though not ideal, tracking portfolio will be the 

one whose returns are on average closest to the ta rg e t’s returns.

Since the return on a tracking portfolio is a weighted sum of returns on all stocks 

in the portfolio, building a tracking portfolio for one nonempty subset of stocks 

is equivalent to fitting a constrained linear model w ith the targe t’s re tu rn  as the 

response variable and returns on stocks in the subset as the covariates. The linear 

model is constrained in th a t all coefficients in the model sum up to  one. This

2
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is because th e  coefficient of each covariate is the proportion of investment on the 

corresponding stock to  the to tal investm ent on the tra cking portfolio and the sum  of 

all coefficients accounts for 100 percent o f the to ta l investm ent.

Because of th e  correspondence of each possible portfolio an d  a constrained linear 

model, the ta sk  of finding the optim al tracking portfolio can be accomplished 

by selecting an  optim al constrained linear model. In th is  paper, we develop 

an autom atic procedure to find an optim al tracking portfolio, based on a m odel 

selection criterion known as the Generalized Inform ation C riterion (GIC). There 

is considerable litera tu re  on the problem  of selecting variables in the context of 

unconstrained linear models; see review papers by Hocking (1976) and Thom pson 

(1978a, b) for early  contributions. Miller (1990) gives an excellent and comprehensive 

treatm ent of variable selection m ethods prior to 1990, and George (2000) reviews the 

key developments in the last decade. T h e  Generalized Inform ation Criterion (GIC) 

we use is proposed by Rao and Wu (1989) and is a  generalization of the well known 

Akaike’s Inform ation Criterion (AIC, Akaike (1973)) and the Bayesian Inform ation 

Criterion (BIC, Schwartz (1978)). Nishii (1984) studies asym ptotic properties of 

several selection criteria, one of which is asym ptotically equivalent to the one by 

Rao and Wu (1989). Nishii (1984), Rao and  Wu (1989), and Potscher (1989) prove 

the consistency of the GIC or its asym ptotic equivalents for unconstrained linear 

models under the assum ption th a t there  exists a finite-dim ensional true model. 

However, they m ade different assum ptions on the random  errors in the linear 

models. Nishii (1984) and Rao and W u (1989) assume i.i.d. random  errors while 

Potscher (1989) assumes th a t the errors follow a m artingale difference sequence. 

Shao (1997) proposes using two criteria to  evaluate asym ptotic validity of a model 

selection procedure: consistency and asym ptotic loss efficiency. (See Section 1.3 for 

definitions of asym ptotical loss efficiency and  consistency.) He shows tha t the GIC is 

asymptotically loss efficient regardless th e  existence of a  true  model and consistent

3
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if a  true  model exists. He deals w ith only unconstrained linear m odels and assume 

th a t the  random  errors are i.i.d.

In this paper, we extend the Generalized Inform ation Criterion (GIC) first to 

constrained linear models with i.i.d. random  errors and then  to constrained linear 

models w ith errors following a  stationary  G aussian process. Since there is no 

guarantee th a t returns on the  target are com pletely determ ined by re tu rns on any 

subset of stocks, we do not take the existence of a true  model for granted. Following 

Shao (1997), we study bo th  asym ptotic loss efficiency and consistency of the  extended 

GIC. We prove that, under certain conditions, the  extended GIC is asym ptotically 

loss efficient regardless the existence of a  tru e  m odel and consistent if a  true  model 

exists.

As an application, we apply the GIC to build  an optim al tracking portfolio for 

the purpose of m easuring the long-term im pact of a  corporate event on stock returns. 

We com pare performance of the GIC based procedure against two o th e r com peting 

m ethods empirically and  find th a t the GIC based  procedure gives the  best results.

T he rest of the paper is organized as follows. In Section 1.2, we formalize 

a  sta tistical model for building an optim al tracking portfolio. In  Section 1.3, 

we introduce both  the Generalized Inform ation Criterion (GIC) and  the extended 

Generalized Inform ation Criterion (EGIC) an d  study  their asym ptotic properties. 

Section 1.4 reports results from a sim ulation study. We then apply GIC to  solve 

the problem  of m easuring long-term post-event, abnorm al return  in Section 1.5. We 

conclude the paper w ith sum m ary and discussion in Section 1.7. Proofs of theorem s 

in th is paper axe given in the Appendix.

1.2 Statistical M odel

Let y t be the return  of investing in a  chosen ta rg e t during time period  t, th a t is,

_  Target’s price a t the end of t — T a rg e t’s price a t the end of t  — 1 
^  Target’s price a t th e  end of t — 1

4
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Let y  =  (t/i, • • •, yT)' be a  vector of returns for t  =  1, 2, • * -, r ,  and y  has th e  following 

representation:

T/ =  /z +  e ,  (1 .1 )

where / i  =  E(y)  is the m ean of y  and e  = y  — fj. is a  vector of random  variables 

w ith  m ean zero. Note th a t we allow the expected re tu rn  of the target to  change with 

tim e in any way.

Suppose th a t m  o ther stocks are available for building a tracking portfolio of the 

targe t. Let X  =  (* 1 , • - • , x m) be a  r  x  m  m atrix  of rank m, where colum n Xj is a 

vector of returns on the j th  stock for t  =  1 , 2 , . . . ,  r .  Let V  be the collection of all 

nonem pty subsets of {1, 2, • • •, m}. Each subset v  E V  indexes a group of stocks. Let 

X (v ) be the subm atrix o f X  whose c o lu m n s  axe returns on stocks in the subset v. To 

build a  tracking portfolio consisting of all stocks in  the subset v, we fit th e  following 

linear model of y  against the m atrix  X ( v ) ,

y  =  X {v)(3 (y)  +  e(u) , (1.2)

where the dimension of /3(v) is equal to the size of the subset v. Note th a t  the error 

com ponent e(v) depends on v  and differs from the random  vector e  in (1.1). More 

specifically, the error com ponent e(v) is the sum  of the random  vector e  in  ( 1 .1 ) and 

th e  m odel misspecification error.

Let j3(v) denote an estim ate of f3(v). Then an estim ate of the expected value 

fj. =  E { y ) is given by j±{y) =  X {y)(3(y). The goodness of the estim ate is measured 

by the a vera g e  s q u a re d  e r ro r  lo ss

L{v) = ll^-^MII2 _ (13)
T

where || • || is the Euclidean norm. The objective of model selection is to  find the 

subset v  whose associated estim ate p.(v) m inimizes the average squared error loss. 

Once the  minimizing subset v is found, the portfolio th a t consists of all stocks in the 

subset v w ith [3(v) as the portfolio weights will be the optim al tracking portfolio.

5
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In th e  context of building a tracking portfolio, the coefficients (3(v) in the linear 

model (1-2) have to sum up to  one. The left hand side o f (1-2) is the retu rn  of 

investing one dollar in the targe t. The right hand side of (1.2) is the retu rn  of 

investing one dollar in the portfolio of stocks in the subs-et v, plus random  noise. 

Each coefficient in /3(v) is the p roportion  of a dollar in v ested  in  the corresponding 

stock, an d  the stun of all coefficients accounts for 100 p e rc e n t of the dollar.

Give a  subset v, to estim ate the  linearly constrained coefficients, we take th e  

model reduction approach given in Hocking (1985, C h a p te r  3). We briefly describe 

the approach in the remainder of th is section for the sake orf the self-completeness of 

this paper. To simplify notation, we drop the subset index v  temporarily.

A linear model with general linear constraints is charac terized  by

y  =  X f3  + e ,  (1.4)

sub jec t to Gf.3 = g  ,

where y  is a  vector of dimension r ,  X  is a  r  x m  m atrix  of” rank  m , /? is a vector of 

m  coefficients, G  is a q x m  m atrix  of rank  q, and e  is a  ra n d o m  vector.

An estim ate of /3 can be obtained  by the model red u c tio n  approach as follows. 

The coefficient vector /? and the constrain t m atrix G  are p a r titio n e d  in the way such 

th a t the constraints are w ritten as

G \/3 i +  G 2 @ 2  =  g ,

where G i is a q x  q m atrix of rank  q. Solving for (3X yields

P 1 =  G - lg  -  . (1.5)

Corresponding to the partition of/? , we partition  X  as X  =  (X% X 2 ), where X i  is

a  r  x q m atrix . Substituting the p artitio n  into the constra in ed  model, we obtain the

following unconstrained model

V r  =  X Rf32 + e .
6
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w here y R = y  — X i G l lg  and  X  R =  X 2 — X i G?x 1G 2. The least square estim ates 

fo r (32 is then given by

P 2 =  {X 'RX R) ^ X ' Ry R .

S ubstitu ting  (32 in (1-5), we get j3t =  G ± lg  — G i^ G 2f32 - We can write the estim ator 

for (3 together as

0  = ‘ P i  ■ '  G ^ g + —G i  1C?2
. P i . 0 I P i - (1.6)

(1.7)

T h en  the estim ate of y. =  E (y )  is given by

A =  X f3  =  rj + H y  . 

where H  = X R(X 'RX r ) - 1 X 'R and  rj =  ( I  -  H ) X 1G Z 1g.

1.3 The Generalized Inform ation Criterion

In the context of unconstrained  linear m odels, numerous criteria have been 

proposed to select variables, see, e.g., Hocking (1976), Thom pson (1978a, b), Miller 

(1990), George (2000), an d  references therein. In  Section 1.3.1, we discuss the 

Generalized Information C riterion  (GIC) for selecting variables in constrained linear 

m odels when observations are independent, and prove the asymptotic loss efficiency 

an d  consistency of the G IC . In Section 1.3.2, we ex tend  the  GIC to constrained linear 

models w ith dependent observations, and give conditions under which the extended 

G IC is still asym ptotically loss efficient and consistent.

We consider constrained linear models of the following form:

Vt =  X r {v)p(v) +  e T(v) , 

sub jec t to  — 1 ?

( 1.8 )

where v belongs to V , th e  collection of all possible nonem pty subsets of the m  

covariates, / is a vector of ones w ith the same dim ension as P (v), and r  is the
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num ber of observed tim e periods. Note th a t the coefficients in f3(v) vary w ith the 

subset v  bu t not w ith r .  In other words, we assume th a t the linear relation between 

y T and X T(v) is fixed through time. Let n T = E { y T). A candidate model v  6  V  is 

said to be correct if there exists j3(v) such th a t f iT =  X T(v)f3(v) for all r .  Let V c 

be the collection of all candidate models th a t are correct.

In the rem ainder of this paper, the  subset index v  E V  is a ttached  to quantities 

th a t depend on choice of the subset v, and the subscript r  is used to indicate 

quantities th a t vary w ith r .

1 .3 .1  In d ep en d en t O bservations

Recall the following identity representation of y T, first introduced in equation 

( 1-1),

y T = V T + .

In this subsection, we assume th a t the elements of e r  are independently and 

identically d istribu ted  w ith a normal d istribution of mean 0 and variance a2.

The Generalized Information Criterion (GIC) selects a  model in the form 

(1.8) th a t minimizes

rr(„) = 11̂ -ft.WJT + (19)
T T

over v G V , where o f is an estim ator of cr2, t r ( H r (v)) is the trace of the m atrix  

H  T(v) introduced in equation (1.7), and Xr is a  sequence of non-random  positive 

numbers. Note th a t o f  does not depend on the model v and can be obtained by 

fitting the linear model w ith all m  covariates included. Note also th a t t r ( H T{v)) is 

equal to the num ber of unconstrained coefficients in the linear m odel (1.8).

Let vT denote the subset th a t minimizes the Generalized Inform ation Criterion 

(GIC), r r (v), over v  E V . Let i f  be th e  subset th a t minimizes the  average squared 

error loss, LT{v), over v  E V. Shao (1997) studies the asym ptotic validity of a
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model selection procedure in terms of two criteria: consistency and asymptotic loss 

efficiency. T he GIC selection procedure is said to be consistent if

P {yT =  v^y  —> 1 as t  —y oo ,

and to be asymptotically loss efficient if

Lr (vT)/ L t{v^)  A- 1 as r  —> oo ,

where -A- denotes convergence in probability. Throughout this paper, all lim iting 

processes are taken as r  —> oo.

The following lemma gives explicit expressions for the average squared error loss 

L t (v ) and the  expected average squaxed error loss R-r(v) =  E (L r (v)).

Lem m a 1 .1  Assum e that the elements o f eT are i.i.d. with a normal distribution o f  

mean 0 and variance a2. The average squared error loss defined in (1.3) is equal to

L t (v ) = A r(i/) +  (e'TH T(v)eT) f t  ,

where A T(v) =  (\\p T — 'HT(V) ~  -^■r(u)/xi-l|2) / r  and ex ~  ^"(0^ I txt) is the vector 

o f random variables in (1.1). Furthermore, A T(v) =  0 fo r  v  E V c. In addition, the 

expected average squared error loss, is

R-r(v) = E (L r (v)) = A t (u) +<r2£r(/T T( u ) ) / r  .

Proof of Lemma 1.1 is given in the Appendix. Lemma 1.1 points out th a t the 

average squared error loss has two components: one is the model misspecification 

error A T(v), and the other is estim ation error (e'TH r (v )eT) ) f r  due to randomness in 

observed d a ta . W hen the model v is correct, the model misspecification error A r (i/) 

is zero.

The following theorem shows th a t vT is consistent and asym ptotically loss efficient 

under certain  conditions. The proof of the theorem is given in the Appendix.
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T h e o re m  1 .1  Assum e that the elements o f eT are i.i.d. with a norm al distribution  

o f mean 0 and variance a 2 and the estimator a 2 used in  computing the GIC, EV ^), 

is bounded. Under the following conditions

XT —̂ oo, xT f  t  —̂ o , (1 .10)

and

the G IC m in im izer vT is asymptotically loss efficient. In  addition, i f  V  contains at 

least one correct model, then vT is consistent.

R e m a rk  1 . 1  Shao (1997) proves bo th  the asym ptotic loss efficiency and  consis

tency for unconstrained  linear regression models w ith i.i.d. random  errors under 

condition (1-10) and  the following condition (Theorem  2 , Shao (1997))

incorrect m odels tends to 0 a t a  ra te  slower than  1 / r ,  the  GIC minimizer vT is still 

asym ptotically valid.

1.3.2 D e p e n d e n t  O b s e rv a tio n s

In this subsection, we extend GIC to linearly constrained regression m odel w ith 

dependent observations. Specifically, we assum e th a t {e£} ^ _ co is a  sta tionary  

Gaussian process w ith  m ean E(et) =  0 and E (e tet+j) — 7 We fu rther assum e 

th a t the au to  covariances {7 y}yl0  3 X 6  absolutely summ able, th a t is,

lim in f min Ai-(v) > 0 .
T —>00 v € V —V c

( 1.12)

It is easy to  see th a t conditions (1-10) and (1.12) together implies condition (1-11) 

because R r(y ) >  A r (u). Shao’s condition (1.12) requires th a t the m odel misspecifi

cation error A r (v) be bounded away from zero uniform ally for all incorrect models. 

Our condition (1-11) suggests th a t, as long as the model misspecification error of

OO
T  =  70 +  2 5 3 1 7 ,-! <  00 . (1.13)

/ = 1  
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T hen  the covariance m atrix  for e T, denoted as is given by

'  To 71 • • • Tr- 1  '
Tl To Tr—2

V r = . . (1.14)

Tr- 1  Ti— 2  • • • To 
The extended Generalized Information Criterion (EGIC) selects a  model 

th a t  minimizes
M v )  =  l la . -ArWII 2 +  AItr( ^ g . (v))

T  T

over v  £  V , where is an estim ate of SUV and XT is a  sequence of non-random  

positive numbers. Note th a t tEV does no t depend on model v and is obtained  by 

fitting a linear m odel w ith all available explanatory  variables included.

Let vT denote the m odel th a t minimizes th e  extended Generalized Inform ation 

Criterion (EG IC), $ r (u), over v  £  V . Let v f  be the model th a t minimizes the 

average squared error loss, L T{v), over v £  V .  T he EGIC selection procedure is said 

to  be consistent if P {y T =  v£}  1. T he EG IC  selection procedure is said  to be

asymptotically loss efficient if L T{vT)/ L r {y^) A  1, where A  denotes convergence 

in probability.

The following lem m a gives explicit expressions for the average squared error loss 

L t (v ) and the expected average squared error loss R T(v) =  E (L T(v)). P ro o f of the 

Lemma is given in  the Appendix.

L e m m a  1.2 A ssum e that {et}^._00 is a sta tionary Gaussian process with E {e t) =  0 

and j j  =  E (e tet+j ) . The average squared error loss defined in (1.3) is equal to

L t (u) =  A r (t/) +  (e'TH T(v)er)/r ,

where A t (v) = (\\fx1. — TjT(v )—H T(^)tJ'r \\2) / 'r - Furthermore, A r (u) =  0 w h en v  £  V c. 

In  addition, the expected average squared error loss is given by

Rr(v) =  E ( L t (v ))  =  A r (v) + t r ( V r H r (v))/T  ,

where the m atrix is the covariance m atrix  given by ( l . l f ) .
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The results on the consistency and  asym ptotically loss efficiency for vT are given 

in  the following theorem . P roof of the theorem  is in the Appendix.

T h eo rem  1.2 A ssum e that {et} “  is a stationary Gaussian process with E(et) =  

0, 7 y =  E(etet+j), and T  =  To+ 2  J2jLi \lj\ <  °°- We further assume that \&r used in  

computing the EGIC, is a consistent estim ator of'$!T and that tr('$!TH T («))

converges to a fin ite  lim it as t  oo fo r  any v E V c. Under the following conditions

that

AT —y oo , A t / t  — 0 , (1.16)

and s' ~ ► 0 f or aM v £ V  — V c , (1-17)
t R t (v )

the EG IC  m inim izer vT is asymptotically loss efficient. In addition, i f  V  contains at 

least one correct model, then vT is consistent.

R em ark  1.2 Theorem  1.2 does not include Theorem 1.1 as a  special case. Even 

though Theorem 1.1 deals w ith a  special case = cr2I T, it pu ts  less restriction on 

the  estim ator of a2, requiring the estim ator of a2 is bounded ra ther th an  consistent.

The following corollary shows th a t  some common stochastic processes are included 

in  Theorem 1.2. The proof of the corollary is simple and om itted.

C orollary  1.1 Theorem 1.2 is valid when {e£} ^ _ co is an infinite moving aver

age Gaussian process given by et =  where at ~  i.i.d .N (0 , o2) and

I V - ,I <  oo.

R em ark  1.3 The G aussian infinite moving average process specified in  Corollary 1.1 

includes stationary G aussian processes AR(p), MA(q) and ARM A(p, q) as special 

cases.
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1 .4  Simulation

We carry out the following sim ulation study for two purposes: first, to em pirically 

check the validity of G IC’s o p tim al properties, and second, to understand how choice 

of the penalty A„ affects G IC ’s perform ance in finite  samples.

1 .4 .1  D a ta  and S etu p

We use historical stock re tu rn s  in the sim ulation study. We random ly selected five 

stocks and extracted their m o n th ly  returns for 96 m onths between Jan u ary  1981 and 

December 1988 from the d a ta b a se  distributed by th e  C enter of Research in  Securities 

Prices (CRSP). The selected five stocks are Wal M art Stores Inc. (W M T), D ayton 

Hudson Corp. (DH), Mac F rugals Bargains Close O u ts  (M FB), Service M erchandise 

Inc. (SM), and Family D ollar S tores Inc (FDS). F igure 1.1 shows the tim e series 

plots on the left column an d  the sample autocorrelation function plots on the right 

column of the m onthly returns o f  the five stocks. Since the sample autocorrelation 

function plots show th a t these m onthly  stock retu rns axe not autocorrelated , we use 

GIC instead of EGIC in th is  sim ulation study.

T he monthly returns of the five stocks, denoted by { x xt, . . . ,  Xst}, axe used as 

independent variables in the  following regression m odel

y t  =  P i X u  +  /32 x 2 t  +  p 2 x z t  +  /? 4 ® 4 t  +  0 5 X 5 t  +  e t  , t  =  1 ,  • • • ,  T

subject to (3X +  p 2 +  /? 3  +  /? 4  +  f35 =  1 .

Fixing the coefficients a t (0.3, 0, 0, 0.4, 0.3) th roughout the sim ulation, we sim ulate 

the response variable yt by generating  random errors et from the norm al d istribution  

N (0, cr2). We choose the standaxd  deviation a  equal to 0.0385 throughout the 

sim ulation. The number 0.0385 is  the sample s tan d a rd  deviation of the 96 m onthly 

returns on the CRSP value w eighted m arket index between January  1981 and
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December 1988. Returns on the value weighed m arket index axe also extracted from 

the CRSP database.

Two sets o f simulations are carried out in  this study. For the first set, we chose the 

number of observations r  to be 36, 60, and 96. Two common choices of the penalty 

XT are employed: one is the XT =  lo g r  and the other is =  yfr.  Given r  and Ar , 

we generate 1,000 samples of response variables, each sample of t  observations. For 

each sample, we compute the Generalized Inform ation Criterion (GIC), r r(x/), for 

all 31(=  25  — 1) subsets of explanatory variables, and identify the subset m in im iz in g  

GIC. We count how many times each subset minimizes GIC out of the  1,000 samples. 

The counts are  reported in Table 1.1.

In the second set of simulation, we choose the num ber of observations r  to be 36, 

60, 96, 120, and  240. Since we have only 96 observed monthly returns, we decide to 

simulate 240 values for each stock in the following way. For each stock, we compute 

the sample m ean and standard deviation of the 96 observed m onthly returns after 

om itting two extrem e values at each tail. Sample means of the five stocks are 0.0349, 

0.0234, 0.0200, 0.0218, and 0.0258, while sam ple standard deviations are 0.0715, 

0.0724, 0.0931, 0.1131, and 0.1015. We use Kolmogorov-Smimov Goodness-of-Fit 

Test to check w hether returns of the five stocks are normally distributed and get the 

following p-values: 0.5, 0.5, 0.0622, 0.5, and 0.0288. Since monthly returns of the five 

stocks are approxim ately normally d istributed, we generate 240 values for each stock 

from a norm al distribution with m ean and s tandard  deviation respectively equal to 

the stock’s sam ple mean and sample standard  deviation. O ther aspects of simulation 

are the same as in the first set of simulations. The results are reported in Table 1.2.

1.4.2 R esu lts

Both Table 1.1 and Table 1.2 show th a t, as the num ber of observations r  increases, 

the probability th a t the GIC selection procedure picks the correct model ( 1 , 4, 5) gets 

closer to 1 . I t  confirms the validity of consistency of the GIC procedure. Both tables
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show th a t the logarithm  rule tends to  overestimate th e  model while overestim ation 

and underestim ation are equally likely when the square root rule is used, which is not 

surprising because the square root rule puts heavier penalty  on models w ith m any 

param eters than  the logarithm rule.

Furtherm ore, both  tables show th a t the probability of selecting the correct m odel 

under the  square root penalty  goes to  1  faster th an  under the logarithm penalty. 

This phenomenon can be explained by bounds on convergence rates for the  error 

probabilities of the GIC given in b o th  Shao (1998) and  Zhang (1993). B oth  Shao 

(1998) and  Zhang (1993) show th a t the rate a t which the probability of choosing 

wrong models by the GIC goes to  zero is an inverse function of the penalty A,-. Since 

y /r  increases faster than  log(r), the error probability w ith the penalty y f r  goes to 

zero faster than th a t with the  penalty  log(r). Practically, this finding suggests th a t 

the square-root penalty is preferable for samples of m oderate or large size, say more 

than  96 observations. For small samples, the square-root penalty does not seem to 

have an  advantage over the logarithm  penalty.

C ontrasting Table 1 . 1  w ith  Table 1.2, we notice th a t, under the same com bination 

of t  and  Ar , the probability of selecting the correct model in Table 1.2 is greater 

than in Table 1 .1 . The cause for the difference might be th a t explanatory variables 

used in the second set of sim ulations are generated independently from norm al 

distributions while explanatory variables in the first set of simulations, being actual 

contemporaneous stock returns, are possibly correlated. Arguments in proof of 

Theorem  1.1 does not help to  explain how structure in explanatory variables affects 

the probability of selecting the correct model.

In next section, we apply GIC to build a tracking portfolio so as to com pute 

post-event long-term abnorm al returns.
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T a b le  1.1. Simulation w ith  observed retu rns
C andidate

Models
A-r - = log{r) sqrt(r)

r  =  36 60 96 r  = 36 60 96

( 1 ) 0 0 0 0 0 0

(2 ) 0 0 0 0 0 0

(3) 0 0 0 0 0 0

(4) 0 0 0 0 0 0

(5) 0 0 0 0 0 0

(1 , 2 ) 0 0 0 0 0 0

(1, 3) 0 0 0 0 0 0

(1, 4) 0 1 0 7 4 0

(1 , 5) 0 0 0 1 0 0

(2, 3) 0 0 0 0 0 0

(2, 4) 0 0 0 0 0 0

(2, 5) 0 0 0 0 0 0

(3, 4) 0 0 0 0 0 0

(3, 5) 0 0 0 0 0 0

(4, 5) 31 1 0 1 2 0 26 2

(1, 2, 3) 0 0 0 0 0 0

(1, 2, 4) 0 0 0 0 0 0

(1, 2, 5) 0 0 0 0 0 0

(1, 3, 4) 0 0 0 0 0 0

(1, 3, 5) 0 0 0 0 0 0

(1, 4, 5) 832 911 953 799 928 991
(2, 3, 4) 0 0 0 0 0 0

(2, 3, 5) 0 0 0 0 0 0

(2, 4, 5) 49 19 1 37 2 0 5
(3, 4, 5) 37 16 2 29 15 2

(1, 2, 3, 4) 0 0 0 0 0 0

(1, 2, 3, 5) 0 0 0 0 0 0

(1, 2, 4, 5) 23 34 24 5 4 0

(1, 3, 4, 5) 25 16 2 0 2 2 0

(2, 3, 4, 5) 2 0 0 0 1 0

(1, 2, 3, 4, 5) 1 2 0 0 0 0
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T a b le  1-2. Simulation w ith  sim ulated returns
C andidate

Models
At =  log(r) sqrt(r)

36 60 96 1 2 0 240 36 60 96 1 2 0 240
(1 ) 0 0 0 0 0 0 0 0 0 0

(2 ) 0 0 0 0 0 0 0 0 0 0

(3) 0 0 0 0 0 0 0 0 0 0

(4) 0 0 0 0 0 0 0 0 0 0

(5) 0 0 0 0 0 0 0 0 0 0

(1 , 2 ) 0 0 0 0 0 0 0 0 0 0

( 1 . 3) 0 0 0 0 0 0 0 0 0 0

(1, 4) 1 0 0 0 0 4 0 0 0 0

( 1 , 5) 0 0 0 0 0 0 0 0 0 0

(2, 3) 0 0 0 0 0 0 0 0 0 0

(2, 4) 0 0 0 0 0 0 0 0 0 0

(2, 5) 0 0 0 0 0 0 0 0 0 0

(3, 4) 0 0 0 0 0 0 0 0 0 0

(3, 5) 0 0 0 0 0 0 0 0 0 0

(4, 5) 1 1 0 0 0 0 33 2 0 0 0

(1, 2, 3) 0 0 0 0 0 0 0 0 0 0

(1. 2, 4) 0 0 0 0 0 4 0 0 0 0

(1, 2, 5) 0 0 0 0 0 0 0 0 0 0

(1, 3, 4) 0 0 0 0 0 0 0 0 0 0

(1, 3, 5) 0 0 0 0 0 0 0 0 0 0

(1, 4, 5) 905 946 950 967 971 951 993 999 1 0 0 0 1 0 0 0

(2, 3, 4) 0 0 0 0 0 0 0 0 0 0

(2, 3, 5) 0 0 0 0 0 0 0 0 0 0

(2, 4, 5) 0 0 0 0 0 1 0 0 0 0

(3, 4, 5) 2 0 0 0 0 3 0 0 0 0

(1, 2, 3, 4) 0 0 0 0 0 1 0 0 0 0

(1, 2, 3, 5) 0 0 0 0 0 0 0 0 0 0

(1, 2, 4, 5) 43 24 2 2 17 15 2 1 1 0 0

(1, 3, 4, 5) 32 27 26 16 14 2 4 0 0 0

(2, 3, 4, 5) 0 0 0 0 0 0 0 0 0 0

(1, 2, 3, 4, 5) 6 3 2 0 0 0 0 0 0 0
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1.5 Application

In this section, we apply GIC to build a  tracking portfolio for the purpose 

of m easuring long-term post-event abnorm al stock retu rn . A great interest in 

learning the long-term  im pact of corporate actions has recently arisen among finance 

researchers and  generated a considerable literature th a t is still growing. The evidence 

for existence of long-term post-event abnormal stock re tu rn  challenges the belief 

th a t the U.S. stock market is efficient, and m otivates research in behavioral finance. 

See Fam a (1998) for a sum m ary of the literature and references therein. In these 

studies, the m ost im portant job is to  precisely estim ate w hat the event firm’s return  

would have been if the event had  no t happened. In  the following, we compare the 

performance of three estim ation m ethods.

1.5.1 E stim a tes  o f A b n orm al R etu rn

The three-year buy-and-hold abnorm al return  of firm i, denoted as ARi  is 

measured as follows

A R i  = R i -  BRi  , (1.18)

where R{ is the  buy-and-hold re tu rn  of firm i over the sam e three years, and B R i  is 

a specific benchmark-hold retu rn  over the same three years. The benchmark return 

is an estim ate of the unobservable status quo return  th a t an  event firm would have 

had over the three years following the  event m onth if the  event had not happened. 

The three-year buy-and-hold re tu rn  of firm i is com puted by compounding monthly 

returns, i.e., Ri  =  IIt= i(l +  r it) ~  T  where rit is firm z’s re tu rn  in month t.

We use four benchmarks to estim ate the unobservable status quo return of 

an event firm. The first benchmark is a size and book-to-m arket ratio matched 

portfolio. Sim ilar benchmarks are widely used in existing finance literature, e.g., 

see D haran and  Ikenberry (1995), Desai and Jain (1997), B arber and Lyon (1997), 

Lyon, Barber and Tsai (1999), and  Mitchell and Stafford (2000). To identify the
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size and book-to-m arket ratio  m atched  portfolio of an event firm, we construct 

70 reference portfolios on the basis of firm size and book-to-m arket ratio and the  

m atched portfolio is the one th a t includes the  event firm. The 70 reference portfolios 

are formed according to the following procedure of three steps . 1

S te p  1 : A t the end of June of year t , we calculate firm size as price per share

m ultiplied by shares ou tstand ing , sort all NYSE firms by firm size into ten  

portfolios of equal size, and th e n  place each A M EX /N asdaq firm in the portfolio 

whose range of firm sizes covers the firm ’s size.

S te p  2 : We p artition  the sm allest size decile portfolio into five subportfolios of equal 

size on the basis of firm size rankings of all firms in the portfolio w ithout regard  

to listing exchange, so th a t we have 14 firm size portfolios. 2

S te p  3: We divide each of the 14 portfolios into five subportfolios o f equal size by

ranking all firms in the portfolio  by their book-to-m arket ratios a t the end of 

year t — 1, so th a t we end u p  w ith  70 reference portfolios. In  the last s tep  of 

the procedure, a firm’s book-to-m arket ratio  a t the end of year t — 1  is equal 

to the ratio  of the book com m on equity (COM PUSTAT d a ta  item  60) a t th e  

end of the  firm ’s fiscal year ending in year t  — 1  over the firm’s m arket com m on 

equity a t the end of D ecem ber of year t  — 1. Throughout the  procedure, we 

include only stocks w ith o rd inary  common equity shares ( th a t is, firms w ith  

CRSP share code being 1 1 ) an d  exclude firms of negative book common equity  

whenever book equity is needed.

1The procedure is created in the sam e spirits as Fama and French (1993), and is almost identical 
to that in Lyon, Barber and Tsai (1999). T he only difference between our procedure and that in 
Lyon, Barber and Tsai (1999) is that we use firms w ith CRSP share code being only 11 while th ey  
allow the CRSP share code to be both 10 and 11.

2 A majority o f Nasdaq firms are sm all and thus fall into the smallest size decile portfolio: as a 
result, approximately 50 percent of all firm s fall in the smallest size decile. B y  further partitioning 
the portfolio, we make the 14 size portfolios have alm ost the same number o f stocks.
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T he benchm ark re tu rn  based on a  size and book-to-m arket m atched portfolio is

com puted as follows:

BRfZBM =  J J  
£=1

-  1 , (1.19)n t

where r Jt is the m onthly return  of firm j  in m onth t  an d  n t is the number of firms 

in m onth t. We label the first benchm ark as B1:SZBM and  th a t is how the above 

abnorm al retu rn  gets its superscript “SZBM” .

T he second benchmark is a portfolio of the ten  firms th a t have the largest 

sample correlation coefficients w ith the  event firm am ong all firms in the size and 

book-and-m arket ratio  m atched portfolio. To identify th e  ten  firms, we chose the 

size and book-and-m arket ratio m atched portfolio for th e  event firm as described 

above, identify all firms in the portfolio th a t  have retu rns for the five years before 

and th e  three years after the event m onth, calculate the sam ple correlation coefficient 

between each identified firm and the event firm based on the  60 m onthly returns in 

the pre-event five years, and then choose the ten firms th a t  have the largest sample 

correlation coefficients. We label the second benchmark as B2:MC10 for the m ost 

correlated ten and  com pute the three-year post-event benchm ark retu rn  as follows

B r m c w  =  f -  tn ‘=l(1 +  rJ|)] -  1 , (1.20)
J=1 iU

where rJt is the m onth ly  return  of firm j  in m onth t. The benchm ark return  is return  

of investing equally in the m ost correlated ten  firms over the  three years starting  

with the  event m onth.

T he third benchmark is simply the  buy-and-hold re tu rn  of the  single most 

correlated firm over the post-event th ree years. In con trast w ith the second 

benchmark, this benchm ark use only the  single firm th a t  has the  largest sample 

correlation coefficient w ith the event firm in the  five years before the  event month. 

We label this benchm ark as B3:MC1 for the  m ost correlated one.
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The fourth and last benchmark falls between the  second and the  th ird  benchm ark. 

After obtaining the m ost correlated ten  firms as in the second benchm ark, we apply 

the GIC selection procedure with the event firm as the response variable and  the ten  

firms as explanatory variables using the 60 m onthly returns in the pre-event five years. 

We use the optim al tracking portfolio resulted  from the GIC selection procedure as 

a benchmark and  label it as B4:GIC. We com pute the three-year post-event re tu rn  

of the benchm ark B4:GIC as follows
36

B R f IC =  ^ 2  wj  
j=i

n a + ’v1) - i
U= 1

(1.21)

where rJt is the  m onthly return of firm j  in m onth t, n,- is the num ber of firms in 

the GIC optim al tracking portfolio, and  Wj is the  optim al weight of the j t h  firm in 

the GIC optim al tracking portfolio. In con trast to  B2:MC10 and B3:MC1, B4:GIC 

removes unrelated firms from B2:MC10, keeps more relevant firms th an  B 3:M C l, 

and also allows different weights for different stocks in the tracking portfolio.

1.5.2 E m p irica l A ssessm en t o f P erfo rm a n ce

To assess the perform ance of the three benchm arks, we employ a  procedure which 

uses actual security re tu rn  da ta  to examine the characteristics of abnorm al returns 

produced by the th ree  benchmarks. This type of procedure has been used widely 

in finance literatu re  to  compare performance of various methodologies for m easuring 

abnormal returns, see, e.g., Brown and W arner (1980), Kothari and  W arner (1997), 

Barber and Lyon (1997), and Lyon, B arber and Tsai (1999).

In the sim ulation procedure, we random ly choose with replacement a  sample 

of 200 event m onths between July 1984 and  December 1994, inclusively. In each 

selected event m onth, we then randomly choose an  event firm w ithout replacem ent 

th a t has returns for the  five years before and  the  three years after the event m onth. 

We compute the three-year post-event abnorm al return  for each event firm using all 

three benchmarks. Since the 200 event firms are random ly selected and not m any
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of the 2 0 0  event months were supposed to  experience any event, we expect th a t the 

2 0 0  abnorm al retu rns concentrate around zero.

Panel A of Table 1.3 reports sam ple m ean, median, s tandard  deviation, inter

quartile range, skewness coefficient and  kurtosis coefficient of the 2 0 0  abnorm al 

returns under each benchmark. S tuden t’s t  test is employed to test the  null hypothesis 

th a t m ean of abnorm al return is zero while F isher’s distribution-free sign test is used 

to test the null hypothesis th a t m edian of abnorm al return is zero (See Hollander 

and Wolf (2000) for detailed description of F isher’s distribution-free sign test). The 

p-values from b o th  tests axe reported in the last two columns.

The t  test shows that none of the  four benchmarks yield m ean abnorm al 

return  significantly different from zero. T he sign test reports th a t the first two 

benchmarks B1:SZBM and B2:MC10 have significantly non-zero m edian abnorm al 

return  while the last two benchm arks B3:MC1 and B4:GIC do not. Since sample 

skewness coefficients and sample kurtosis coefficients under all four benchm ark are 

fax away from th e  theoretical values of a  s tan d ard  normal distribution (the theoretical 

skewness and kurtosis coefficients o f a  s tan d ard  normal distribution axe 0  and 3 , 

respectively), we believe th a t m edian is m ore appropriate than  m ean in measuring 

central tendency of abnormal returns and  th a t  the sign test is more appropriate than  

the t  test in telling the difference between benchmarks. Based on the sign test, the 

last two benchm arks B3.MC1 and B4:GIC produce abnormal returns for this sample 

th a t are on average close to zero. Since the  sample of 200 firms under current study 

axe random ly selected without actual events occurring in specified event months, 

abnorm al returns axe expected to be close to zero on average. From this point of 

view, the last two benchmarks do a  b e tte r  job  for this sample th an  the first two 

benchmarks. T he reason why the first two benchmarks underestim ate abnorm al 

return  (median of abnormal returns under B1:SZBM and B2:MC10 axe -0.2555 and 

-0.1466, respectively) might be th a t b o th  benchm arks include m any stocks in their
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T a b le  1.3. A sample o f 200 random ly selected firms.
Descriptive S tatistics p-values

m ean m edian std iq r skewness kurtosis t sign
Panel A: Abnorm al re tu rns under four benchm arks

BlrSZBM -0 . 0 2 2 -0.256 1.180 0.957 1.437 6.982 0.794 0.009
B2:MC10 0.054 -0.147 1.145 0.995 1.389 6.775 0.503 0.028
B3:MC1 -0 . 0 2 1 0.069 2.214 1.109 -3.323 23.699 0.896 0.289
B4:GIC 0.084 -0.030 1.381 0.941 0.115 9.856 0.390 0.621

Panel B: P aired  difference in abnorm al re tu rn  between benchm arks
d(B4, B l) 0.106 0.163 0.884 0.652 -2.811 17.689 0.092 0 . 0 0 0

d(B4, B2) 0.030 0.063 0.674 0.550 -2.494 14.443 0.533 0.019
d(B4, B3) 0.105 -0.075 1.322 0.536 5.037 38.007 0.264 0.056
d (B l, B2) -0.076 -0.050 0.416 0.328 0.047 8.765 0 . 0 1 0 0.009
d (B l, B3) -0 . 0 0 1 -0.213 1.889 0.847 5.366 38.348 0.993 0 . 0 0 0

d(B2, B3) 0.075 -0.185 1.712 0.833 5.369 39.139 0.537 0 . 0 0 0

benchm ark portfolios (a t least 1 0  stocks) and  the average retu rn  of these m any stocks 

is closer to the m arket re tu rn  than  an event firm ’s return.

Panel B of Table 1.3 reports paired difference in  abnormal re tu rn  between the four 

benchmarks. Paired difference in abnorm al re tu rn  between any two b e n c h m arks is 

the  difference between the abnorm al retu rns under the two benchm arks for each firm 

in the sample. For example, the paired difference between B1:SZBM and B2:MC10, 

d (B l, B2), is a  vector of 200 values, each value for one firm being the  difference 

between abnorm al re tu rn  under BlrSZBM  and th a t under B2:MC10. The paired 

difference gives a  direct and  precise com parison between benchmarks. Again, the sign 

te s t is more appropriate th an  the t test in  testing  the  difference between benchmarks. 

Based on the sign test, B4:GIC is significantly different from BlrSZBM  and B2:MC10 

while B4:GIC is different from B3:MC1 w ith  a p-value of 0.0560.

1.6 Proofs

P r o o f  o f  L e m m a  1 . 1 :
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The loss function L T( v ) can be  decomposed as follows

t L t {v ) =  \ \ p T -  £ r (u ) | |2

=  IIt*r -  (»7r(v) +  H T(v )y T ) | | 2  

=  I lA*r -  »?r(v) -  H t (v )h t  -  H T(v )eT112  

=  11^ -  »?t ( u ) -  H r(t/)Air||2 +  e'rH r (v)er 

-  2e',.iT'r (u)[/ir -  H r (v )p T -  7/x(n)]

=  l l / ^ r  -  * ? r ( v )  -  H t {v ) H t I I2  +  < ^ r ( u ) e r  .

The second and  th ird  equality holds because of (1.7) and  (1.1), respectively. The 

fourth equality  holds because H 'r ( v ) H T(v) =  H T{v). T he last equality holds because 

H 'T(v)[»T - H r (v )» T =  H 'T( v X r  -  h t (v) ) ( ^  -  X t W G r 'a W )  =  o.

For v  E V c, we know f i r =  X r (v)j3r (v) and th a t the  random  vector e in the 

constrained linear model (1.4) has mean zero. Then th e  least square estim ate /? 

in equation (1.7) is unbiased. By taking expectation on b o th  sides of equation 

(1.7), we ob ta in  X T(v){3T(v) =  rjT(v) + H T(v)fxr . Therefore, we obtain A x(u) =  

IlMr ~  *IT(V) -  H T(v)fxr \\2/ T  = 0.

The expression for the expected average squared error is obtained as follows

Rr(v) = E ( L T(V))

=  A  T( v ) + E ( e 'TH T(v)eT) / r  

=  A T( v ) + t r ( H r (v)VdiT(eT) ) / T  

=  A x(u) +  a 2t r ( H T( v ) ) / r

□
P r o o f  o f  T h eo rem  1.1:

In the proof, we use argum ents in spirit similar to those in Li (1987) and Shao 

(1997).
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First, note th a t the GIC procedure is to minimize

r / x  I ! i / t - £ t ( v ) | | 2  a  r a * t r ( n r (v))r r{v) =  --------   + ---------- ----------

_  lle x | | 2  +  r L r (v) +  2e'r ( n r (v) -  f iT{v)) + XTd ^ t r ( H T{y))
T  T

For v  e  V c, since f iT(v) — rjT(v) — H T(v)fJ.T(v) =  0 and L r (v) =  (e!TH T{v)eT) fr ,  we 

get

IV(„) =  J!±JJ! +
T  T  T

For v  G V  — V c, we have 

r T(t,) = 1 K I 1 2  , l l M r ( « ) - A r W l I 2  , (Ard̂  — 2<r2) t r ( H T(v))

, 2[a2t r ( U r (v)) -  e'rH T(v)eT\ +  2e'T[nT(v) -  (riT(v) +  H T(v)/xT(v))]
T

=  I M !  +  i r („) +  0 p(LT(v)) (1.23)
T

where the last equality holds uniformly in v  6  V  — V c. To establish the last equality, 

it suffices to show th a t in probability,

m ax f ' » )  -  ( V M + H M U M )  1 A  „ { l M )
v e v - v c r R r iy )  ’ v '

max °*t T ^
v& V-V ' r R r ( v )  v '

( \ Ta l  — 2cr2) t r ( H r (v))  „ .
max ^ n  n  A  0  , (1.26)

v e v - v *  t R t(v ) v '

and

max v e v - v <=
LAv)_
R t {v )

p . 0 . (1.27)

We shall prove (1-24) first. Given any e >  0, by Chebyshev’s inequality we have

P  |m a x t,ey_v'c e; [/*. (v)-T)r (v) - H t („) j l  „ (v)] >£}T i t r  («)

^  ^  B[e'r( n j v) - r i ^ v ) - H r(v)njv))]2 ti oo\
<    [r«rC»)6]*---------  ‘ I1-28)

Since E(e)  =  0, we know

^ [ C t ( ^ t ( v )  ~ » I i - ( u )  - i T r ( w ) ^ r ( ^ ) ) ] 2
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=  V a r (e ;O ^ 0 ) -  rjT(v) -  H r (v)fxr (v)))

=  (Mr(w) -  *It {v ) -  H Av)t*T{v))' o2 I r {fiT{v) -  t j t ( v )  -  H T{v)fiT{v))

=  (^WfA^v) — TJr (v) - H r (v)fXT(v) | | 2  ,

where Var(-) gives th e  covaxiance m atrix  of its argum ent. Since rFiriy) >  ll/vC17) 

T/r (u) — H T(v)fxr (v)\\2, the  right hand side of (1.28) does not exceed

5  E
£ 2  TR t(v) ’

which tends to 0 by condition (1.11). We thus obtain  (1.24).

Next, we shall prove (1.25). Since e T is normally d istribu ted  w ith E ( e T) =  0 

and V ar(er ) =  cr2/^ ,  it is well known th a t  E{e'TH T{y)eT) =  a 2t r { H T(v)) and 

Var(e(.i3'1-(u)e1-) =  2a4t r { H T{ v )H  T(v)). Given any e >  0, by Chebyshev’s inequality 

we have,

■{
P  < maxv e v - v c

t r ( * r& r (v)) -  e'TH T(v)eT
T R r i y )

> s

<  y ^  E[tT{*rH r {v)) -  e!TH T{v)eT\2
ve^ V‘ [t R t {v )£]2

_  y -  Var (e!TH T{v)er )
v^V-V* [r -^r ( ' y ) 6 :] 2

mcr4 1

s  - 5 -  E=■ n V ^ V -  ( r R A v ) ) 2  '
Since Rr{v) > 0, th e  last term  goes to zero under conditions (1.11). We thus obtain 

(1.25).

To prove (1.26), we no te  th a t both ar2 and  t r ( H r {v)) are bounded. Then (1.26) 

holds under condition (1 . 1 1 ).

Finally, (1.27) is equivalent to (1-25) since

L t(v)

R tM
- 1

_  IL r (v) R t (v ')| _  Ie'TH T(v)eT -  a2t r ( H  T(v))\
Rr(v) t R t(v )

We thus conclude th e  p roof of equation (1.23).
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Next, we show the asym ptotic loss efficiency and consistency of th e  GIC minimizer 

vT, using equations (1-22) and (1.23). W hen V°  is empty, we know from  (1.23) th a t 

vT is asym ptotically equal to the minimizer of L T(v) , th a t is, vT is asym ptotically  loss 

efficient.

W hen V c is not empty, we can show th a t  for any vc E V c,

uniformly in v E V  — V c, using similar argum ents in proof of (1.26) and  (1.25). 

Equation (1-29) together w ith equation (1.23) implies th a t vr  will always belong to 

V c asymptotically if V c is not empty.

We can further prove, using similar argum ents in proof of (1.25),

Then we know from (1.22), for vc E V c, r r (v) — ||e r ||2/ r  is asym ptotically dom inated

(1.29)

K - H T(v)e.T p
m a x ------------- — -------------1 0

\ Ta^ tr{± lT[y)) 

by the term  AT<j\tr{HT{v)') j r .  Because a T is bounded and does no t depend on 

the index v, the dom inating term  \ Td ? t r ( H T(y) ) / t  has the same m inim izer as 

L t(v) = e!TH T(v)eT/ t  asymptotically. Therefore we obtain

P { v T E V c bu t Vt 7  ̂v^.} -> 0 , (1.30)

which means th a t vT is asym ptotically loss efficient when V c is not empty.

Equation (1.30) also implies th a t P {yT =  v^ }  —>• 1 when V c is no t empty. We 

thus conclude th a t vT is consistent. □

P r o o f o f  Lem m a 1.2:

Proof of the first two parts is identical to  proof of Lemma 1.1. So only the last 

part is proved here.

Rriv )  =  E ( L t (v))

=  A t (v) +  E((e!TH  T(v)eT)) /  t  
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=  At (u) +  t r {E {eTe!T) H T{v) ) /r  

= AT(t;) +  t r ( ^ TH T( v ) ) f r  .

T he following two lemmas are necessary for the proof of Theorem 1.2.

L em m a  1.3 L e t ^ r be the covariance matrix given by (1.14)- Let a =  (ai, a-i, • • -, a f f  

and b = (bi ,  6 2 , • • • ,  bT)' be any two vectors. The following inequality holds

k * t6| < ,

where T  is the absolute sum of autocovariances given in (1.13). In particular, when 

| | a | | 2  =  ||6 | | 2  =  1 , we have la'^Evhl <  T .

P r o o f  o f  L em m a 1.3:

Because of the special s tructure  \ErT, we have

\a'<STb\ =

Notice th a t

Y  Y  a k h l k - i
fc=i /=i

T T — 1 /  T —i  N

To Y  M i  +  Y  (  7 t  Y ( a i + i b i +  M t + » )
1 = 1  i = 1  \  ; = i  j

<  To Y  M i l  +  Y  ( M  X X l a M / |  +  | M i + » ! )
1=1 i= l  \  1=1 /

1 = 1  i=i
and for any i 6  { 1 , 2 , - • •, r  — 1 },

r - ,  T~i n2 4 -  h2 1

1 = 1

and similarly

<  E « ?  +  E ‘ ?  = IH I’ +  W
1 = 1 v.1 = 1  1 = 1

E > A +i <  <  5  ( ± 4 + £ b f )  =  l | a | |2  + 1161,2
l=i 1 = 1  z z \ / = 1 i=i /  z
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We thus ob ta in

K * , 6| <  M f f i (To + i t M )  =  i M ! ± M ! ! r .
Z / = 0

□

L e m m a  1 .4  Suppose that H  is an idempotent matrix o f  rank r.  Then 

t r ( * TH )  < r T  and t r ( V TH<2TH )  <  ( rT ) 2  .

P r o o f  o f  L e m m a  1.4:

Let th e  r  x  r  m atrix A  be I r  0  

0  0

, be a r  x r  m atrix  where I r represents the  

identity m atrix  of dimension r. Since H  is an idem potent m atrix  of r ank r , there 

exists a r  x  r  orthogonal m atrix  C  such th a t C ' H C  =  A . Then we have

t r ( * TH )  = t r ( * TC A C ' )  = t r ( C ' V rC A ) =  £  dk^ Tck ,
fc=i

where c*, is th e  /cth column vector of the m atrix C.  Since C  is orthogonal, dkCk =  1 

for k  =  1 , 2, • - •, r ,  and thus we know tr('SfTH )  < r T  by Lemm a 1.3.

Notice th a t  tr ( f$TH )  =  ir(A C '/\Prr C'A) and A C '$ TC A  is symm etric and non

negative definite. Therefore we have tr{ff!TH ^ rH )  <  [£ r (^ r fT  ) ] 2  <  ( rT )2. O 

P r o o f  o f  T h e o re m  1.2:

First, no te  th a t the EGIC procedure is to minimize 

$ T(V) =  £r(tt) | ATt r ( $ TH T(v))
T T T

_ \\eA\2 + ||A*x(w) -  At(^)H2 + 2er(vM ~ Ar(«)) + ATtr(4 tTH T(v))
T T

For v  €  V c, since £tr (v) — t jr (v) — H T(v)fj.T(v) =  0, we have L T(v) = (e'TH T(v)er ) f r  

and thus
* r(t;) =  i l f d i !  +  _  e 'TH T(v)eT 3

T T T
For v  6  V  — Vc, we have 

$T(V) = He Ĥ2 | WvM- f r MII2 [ K t r ( $ TH T(v)) -  2tr{<STH T(y))
T T T T
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t 2{ tr (9TH r (v)) -  e'rITr (v)er] ( 2 e > , [ M »  -  Vr(v) -  g r ( » ) | i r (« ) |
r  t

= ^ 7 -  + L A V) +  op(Lr (y)) (1.32)

where the last equality holds u n ifo r m ly  in  v G V  — V c. To estabhsh  the  last equality, 

it suffices to show th a t in  probability,

K \p r{v) ~ *7r(*0 ~  H T{v)nT{y)\ _p
t R t{v)

t r ( * r H T( v ) ) - e fTH r (v)eT p

m axv e v - v c 0

m axv€V-V* 0 ,

m axvev-v<=

rRr(v)

Ar tr{4fTH T(v)) -  2t r ( * TH T(v)) p 
t R , ( v ) 0

(1.33)

(1.34)

(1.35)

and

m axv e v - v c
L r {v)
Rriv)

-  1 0  . (1.36)

We shall prove (1.33) first. Given any e  >  0, by Chebyshev’s inequality we have

p f m _„ e ’r[vJv)-r j^v) - H r(v)VAv)} .  Jr | m a x „ ^ _ 7 c

— EveV-V*  [TfirWf] 2
(1.37)

Since E ( e ) =  0, we have

£ [ < ( # • »  -  r i M  -  H M v M ) ?

=  V a r « ( /» r (u) -  riT(v) -  H T(v)ftr (v)))

= ((“rM  -  I r M  ~  H r(v)pr(v))' ' tT(fiT(v) -  nT(v) -  H t(v)h t(v))

<  T | | a . t ( » )  -  r)T(v)  -  H r(v)nr(v) I I 2 ,

where Var(-) gives the covariance m atrix  of its argum ent and the last inequality holds

because of Lemma 1.3. Since t R t(v) > \\pT(v) — r}T{v) — H r (v)fiT(v)|[2, the right

hand side of (1.37) does n o t exceed

X 1

e2 v(̂ V' t R t (v ) ’

which tends to 0 by condition (1.17). We thus ob ta in  (1.33).
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Next, we shall prove (1.34). Since e T is norm ally distributed w ith £ '(e r) =  

0 and  Var(eT) =  it is well known th a t E{e'TH T{y)eT)  =  t r { ^ TH T{v))

and Var(e(.jH T(v)e.T) =  2 t r { ^ TH T{ v ) ^ TH T{y)). By Lemma 1.4, we know 

Var(e'TI I T(v)eT) <  ( rT )2. Given any e > 0, by Chebyshev’s inequality we have,

t r ( ^ TH T(v)) -  e'TH T(v)ei
P  < m axv e v - v c

E[tr{<STH T{v)) -  e'rH T(v)eT]2

vev-v*

>£}
< ^  [ T R r ( v ) e \ 2

Var (e!TH T{v)eT)

vev-v*

<  ( — )*  V  ------   .V e  )  v J r L v ,  {t R t {v ) Y

Since R - r ( v )  >  0, the last term  goes to zero under conditions (1-17). We thus obtain

(1.34).

To prove (1.35), we note th a t both tr(*ffr H T(y)) and tr(J$TH T(v)) are bounded. 

T hen since F L r ( v )  > A x(u), we know (1.35) holds under condition (1.17).

Finally, (1.36) is equivalent to (1.34) since

Lr (v) _ 1 _  IL r ( v ) - R r ( v ) \  _  \B'TH T{v)eT - tr{< STH T{v))\
R t(v) Rr(y) rRriv)

We thus conclude the proof of equation (1.32).

Next, we show th e  asym ptotic loss efficiency and consistency of the EGIC 

minimizer vTl using (1.31) and (1.32). W hen V c is empty, we know from (1.32) 

th a t the minimizer o f $ r ('y)» Vt , is asym ptotically equal to the m inimizer of LT(v), 

th a t is, vT is asym ptotic loss efficiency.

W hen V c is not empty, we can show th a t  for any vc G V c,

$ t ( v c )  -  =  op(Lr (v)) (1.38)

uniformly in v  G V  — V c, using similax argum ents in proof of (1.35) and (1.34). 

Equation (1.38) together with equation (1.32) implies th a t vT will always belong to 

V c asym ptotically if V c is not empty.
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We can further prove, using simila r  argum ents in proof of (1.34),

e ' H T(y)eT 
m a x  s------------------- 0  .

Ar t r ( ¥ TH r (v)) P

T h en  we know from (1.31), for vc E V c, $ r (u) — | |e r ||2/ r  is asym ptotically dom inated 

by th e  term  AT£r(’$rr iT r (u )) /r . U nder the  assumption th a t  'T r is a consistent 

estim ator of T v  and that t r { ^ TH T{y)) converges to a finite limit as r  —y oo for 

any v  E V c, the  dominating term  XTt r { ^  t H  T{y)) /  t  has the same m in im izer  as 

L r (v) =  e'TH T(v)eTf t  asymptotically. Therefore we obtain

P { v T E V c bu t vT ^  v —>■ 0 , (1.39)

which means th a t vT is asymptotically loss efficient when V c is not empty.

E quation (1.39) also implies th a t P { v T = v ^ }  1 when V c is not empty. We

thus conclude th a t  vT is consistent. □

1.7 Summary and Discussion

In  this paper, we point out th a t  building a  tracking portfolio for a target 

stock is equivalent to selecting variables in linear regression models with linearly 

constrained coefficients. We develop a procedure to build an optimal tracking 

portfolio by extending the Generalized Inform ation Criterion (GIC) to constrained 

linear regression models with independent observations. We also extend the GIC 

to constrained linear regression models w ith errors following a stationary Gaussian 

process. Under mild conditions, the extended GIC is proved to  be asymptotically loss 

efficient w ith respect to the average squared error loss, and furthermore, consistent 

when a  true model exists.

A sim ulation study is carried out to evaluate the performance of the GIC 

procedure in finite samples. The sim ulation shows that the percentage of selecting 

the correct model is increasing and close to  one when the sam ple size increases.
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T h e  results also indicate th a t  the square-root penalty  rule perform s b e tte r  than  the 

logarithm  penalty  rule for m oderate and large sam ple sizes.

T he GIC selection criterion is applied to  building an optim al tracking portfolio 

for m easuring long-term  post-event abnorm al stock return. We compaxe the GIC 

m ethod  w ith two o ther m ethods in m easuring abnorm al returns o f 2 0 0  randomly 

selected firms th a t are expected to have zero abnorm al return. O ur results show th a t 

th e  GIC m ethod outperform s the other two m ethods.

In this paper, th e  extended Generalized Inform ation Criterion (EG IC) for depen

d en t observations has no t been applied to  m onthly re tu rns of individual stocks in bo th  

th e  sim ulation and empirical analyses. In  fact, it is well docum ented in literature 

th a t  m onthly returns of individual stocks have insignificant autocorrelation while 

daily  re tu rns appear to be negatively autocorrelated , see, e.g., Cam pbell, Lo and 

M acK inlay (1997, C hapter 2) and references therein. In  studies on building optimal 

tracking  portfolios to  track daily movements in a  chosen financial index, EGIC shall 

be employed. In the context of tracking financial indices, choice of penalties in the 

selection criterion can be empirically investigated. For instance, we m ay construct 

two index funds based on the logarithm penalty  rule and the square-root penalty 

rule. The perform ance of the two index funds can be compared according to how 

closely each fund mimics the target index in a given tim e period. A nother direction 

o f fu ture research is to apply the  GIC procedure to m easure the long-term  post-event 

abnorm al returns of a  sam ple of firms th a t actually  experienced a specific event.
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C H A PTER  2

RISK M A NA G EM ENT, D ISPERSED  
INFORM ATION, AND INTERN A L M A RK ET

2.1 Introduction

Risk management has become an indispensable task  in large corporations th a t de

m ands extensive firm-wide effort. According to  Brown (2000), HDG Inc., pseudonym 

of a  large m ultinational corporation, devotes approxim ately 1 1  full-time employees 

to foreign exchange risk management: four in  US-based foreign exchange group, two 

regional treasury m anagers, one senior m anagem ent, two in treasury  accounting, and 

two in support group. The Foreign Exchange M anagement Com m ittee in HDG is 

composed of high rank officers, including the Chief Financial Officer, C orporate Con

troller, Treasurer, regional Vice-Presidents (Am erica, Asia-Pacific, Europe, Japan), 

and the M anager of Foreign Exchange. As so m any parties across the  organizational 

chart in a corporation are involved in risk m anagem ent, a  risk m anagem ent program 

th a t optim ally organizes relevant parties’ activities is in demand.

An unorganized or ill-organized risk m anagem ent program  m ay result in two 

undesirable consequences: underhedging or overhedging. In the case of underhedging, 

the corporation remains exposed to the down side of certain risk factors, which will 

cause shareholders to suffer serious loss in value if the exposed risk factors happen 

to  take their down sides in future. In the  case of overhedging, th e  corporation 

buys unnecessary exposure to  the up side of certain  risk factors, which reduces
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shareholders’ value due to transaction costs in financial m arkets . 1 An optimal risk 

m anagem ent program  should be effective in controlling b o th  underhedging and 

overhedging.

A risk m anagem ent program faces two prim ary issues. F irst, it needs to identify 

who makes hedging decisions. A m ultidivisional corporation either lets divisions 

m anage risk a t the division level or lets the  corporate headquarters make decisions 

a t the corporate level. The choice between decentralization and centralization 

determines roles and  responsibilities o f each party  involved in  risk management. 

Second, a  risk  m anagem ent program should be effective in helping the corporation 

fully use its  in ternal fund. Since external fund is costly, a corporation maximizes its 

value by m aking best use of internal fund. T he difficulty a m ultidivisional corporation 

faces in using in ternal fund is th a t no one in the corporation knows precisely the 

sum of in ternal fund the corporation as a  whole will have. Performance of a risk 

m anagem ent program  crucially depends on how well it overcomes the difficulty of 

gathering inform ation on internal fund.

Existing risk m anagem ent programs in large corporations fall into two categories 

according to  a  survey by the Financial Executives Research Foundation, which is 

docum ented in Davis and Militello (1995). Companies in the first category, including 

General Electric, Mobil, Union Carbide, etc., delegate hedging decisions to divisions. 

Companies in the second category, including Eli Lilly, Applied M aterial, etc., make 

hedging decisions a t the corporate level. Even though the survey does not reveal how 

corporations gather inform ation on internal fund, managers being surveyed consider 

it an im portan t issue. This is evident in the following principal concerns they have 

expressed: how to  gather exposure data, how to ensure accuracy of exposure data,

1The total transaction, cost a  corporation spends on hedging nowadays is a noticeable sum. 
Brown (2000) estim ates that HDG Inc. spends roughly $2.3 million on transaction costs annually 
for managing its foreign exchange risk. Since HDG has exposure to other risks as well, including 
interest rate risk, operational risk, counterparty credit risk, etc., the total transaction costs HDG 
spends on m anaging risk is certainly greater than $2.3 million.
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and how to establish controls and accountability (Page 7 in Davis and Militello 

(1995)).

In this paper, we set up a  theoretical framework to analyze the problem of 

designing a risk management program . We trea t risk m anagem ent in a more general 

sense th a t corporations use hedging not only to avoid financial distress but also to 

secure financing for future investments. We dem onstrate th a t neither of the two 

existing categories of risk m anagem ent program  is optimal; they either underhedge 

or overhedge. We propose a th ird  kind of risk management program and show th a t 

it is b e tte r  th a n  existing ones.

The rest of th is paper is organized as follows. In Section 2.2, we s ta te  the 

problem of designing a risk m anagem ent program  a t a  m ultidivisional corporation. 

In Section 2.3, we formulate a  theoretical framework under which performance of 

four risk m anagem ent programs are studied. Section 2.4 concludes the paper with 

summary and discussion.

2.2 Problem  Description

In this section, we state the problem  of designing a risk m anagem ent program. 

Our model concerns corporate decisions a t two time spots, labeled as time 0 and 

time 1 respectively. Time 0 is present while tim e 1 is future. T hroughout the paper, 

we assume the  discount rate between tim e 0 and time 1 is zero. A t tim e 1, the world 

is in one and only one of N  possible sta tes, which are indexed by {1, 2, • • •, N } .  We 

assume th a t there exists a risk neutral probability distribution p  =  (p i,P 2 , • • * ^Pat)' 

of these states, where pk is the probability th a t the world is in the &th s ta te  a t time 1 .

We consider a  multidivisional corporation with M  divisions. Let Vj be division 

j ' s operating income at time 1  for j  =  1 , 2, • • •, M . The distribution of Vj is given by

if the world is in s ta te  1 ; 
if the  world is in s ta te  2 ;

if the  world is in s ta te  N,
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We assume th a t  the  optim al investm ent o f division j  a t tim e 1 is rjjk if the  world 

is in s ta te  k.2 Let rjj =  (rjji, r]j2 , , VjnY  be division j ’s op tim al investment for

every sta te  of tim e 1. A division has two sources of funds to  finance its  investment a t 

tim e 1 : operating incom e from existing production projects and funds acquired from 

external financial m arkets. T he former is called internal fund and  th e  la tter external 

fund. For example, if the  world is in s ta te  k  a t time 1 , then  division j ’s operating 

income is equal to  v]k and  its optim al investm ent is in the  am ount of Tj j k .  If the 

operating income is g reater th a n  optim al investment, i.e., vjk >  77^ ,  the division is 

able to  finance its  investm ent via internal fund only; otherwise, th e  division has to 

acquire external fund. Since external fund is costly, a division always prefers to  have 

sufficient internal fund in  every s ta te . Unfortunately, the  d istribu tion  of operating 

income does not always m atch  th a t  of optim al investment. W hile a division has 

g reater operating incom e th an  optim al investment in some sta tes  o f the world, it 

has less in o ther s ta tes . To finance investm ent using as much of its  internal fund 

as possible, a division needs to shift operating income across s ta tes  so as to  m atch 

investment needs.

We assume th a t  a  com plete financial m arket exists th a t enables divisions to  shift 

operating income across s ta tes  of the  world . 3  In a  complete financial markets, there 

are N  primitive A rrow  securities, one for each s ta te  of the world (A rrow  (1964)). The

2The optimal investm ent is exogenously determined. It captures essence o f  existing theories 
on why firms hedge. Firms that hedge to reduce the volatility o f its taxable incom e (Smith and 
Stulz (1985)) will prefer rjji =  Tjj2 =  ••• =  rjjN- Firms that hedge to reduce th e probability of 
bankruptcy or financial distress (Stulz (1996), Ross (1997) and Leland (1998)) will prefer rjjk >  d j k  

for k  =  1 ,2 ,  • • • , IV, where d ] k  equals a  firm’s anticipated financial obligation in s ta te  k .  Firms that 
hedge to avoid raising funds in external capital markets (Froot, Scharfstein and Stein (1993)) will 
prefer large T]j k  in s ta te  k  when attractive investment opportunities are likely to exist but external 
funds are hard to get. Firms that hedge to prove their superior investment projects or management 
ability to the public (DeM arzo and Duffie (1991), Breeden and Viswananthan (1996)) will prefer 
large T)j k  in state k  when m ost of their com petitors do poorly.

3The assumption o f  a com plete financial market is more plausible now than 20 years ago because 
of recent innovations in  financial products and advances in financial engineering. See Merton (1992) 
for a review of how financial innovations improve economic performance as well as complete the 
financial markets.
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A rr o w  security o f sta te  k, also called the kth  Arrow security , is a  contract 

between buyer and seller, which entitles the buyer the right to receive one unit of 

money from the seller if  th e  world is in state k  a t tim e 1  and nothing if in  any other 

s ta te . The seller then  receives a fixed price a t tim e 0 for being willing to give one 

unit of money to  the buyer should the world be in  s ta te  k  a t time 1 . U nder the risk 

neu tral probability d istribu tion  p ,  the risk neutral equilibrium price of a  /cth Arrow 

security is equal to the probability  of the fcth s ta te  occurring, pk. However, because 

there exist transaction costs in  real-world financial m arkets, actual transaction  prices 

are different from the theoretical equilibrium price. Let bk be the buy price a  buyer 

pays and sk the sell price a  seller receives for one /cth Arrow security in the  financial 

m arket for k =  1, 2,'- - • , N .  Because of transaction costs, the following relationship 

generally holds in real-world financial markets

bk > Pk > Sk >  0, for k  =  1,2, • • •, N  .

Sources of transaction cost include cost of m aintaining intermediacy by financial 

intermediaries, cost of credit risk, to name a few.

The following example illustrates how operating income of time 1 is shifted across 

sta tes  via Arrow security. Suppose a division buys one /cth Arrow security a t the 

price of bk a t time 0. Then the  division will receive one unit of money if  the world 

is in s ta te  k  at time 1 and  zero if in any other s ta te . Consequently, the  division’s 

disposable internal fund increases by the a m o u n t of 1  — bk in s ta te  k and  decreases 

by the amount of bk in any o ther sta te . The example suggests th a t a division whose 

operating income is less th a n  its optim al investment in s ta te  k a t time 1  can raise 

its  disposable internal fund of s ta te  k  by buying a  sufficient num ber of the /cth 

Arrow security. The division acquires external fund a t higher cost only when it faces 

shortage of internal fund in some states no m atter how it shifts operating income.

In a  multidivisional corporation, since divisions are generally in different fines of 

business, involving different processes, products, customers, geographical locations,
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etc., their operating incomes are not perfectly correlated w ith each other. In  any state 

of the world, some divisions may be short of internal fund while other divisions may 

have more internal fund th an  they need. Divisions of the former type are called deficit 

divisions and those of the la tte r type are surplus divisions. The potential th a t one 

division’s surplus offsets o ther divisions’ deficit makes it attractive to let the corporate 

headquarters make hedging and financing decisions based on consolidated operating 

income and optim al investment of the whole corporation. Let u  =  (ki, U2 , - • •, u ^ )  be 

the corporate operating income of time I, which is th e  sum  of all divisional operating

incomes, i.e., uk = v lk + v2k-\------- 1- vMk for k  =  1,2, • • •, N .  Let £ =  (&, f 2, ■ • •, &r)'

be the corporate optim al investment of tim e 1 , which is the sum of all divisional 

optim al investments, i.e., £k =  vik  +  r^k H 4- VMk for A: =  1, 2, • • -, AT.

To make central decisions, headquarters needs to  know corporate operating 

income and corporate optim al investment. Unfortunately, exact figures of u  and 

£ are not readily available to headquarters. In a m ultidivisional corporation, since 

only divisions know their operating income and optim al investment, headquarters has 

to rely on divisions’ reports to estim ate u  and £. T he estim ated figures are generally 

imprecise due to inform ation loss in the reporting process and divisions’ incentives to 

report biased figures in their favor. We will show th a t  bias in the estim ated figures 

reduces benefits of centralization in managing risk in Section 2.3.3.

In next section, we present a  theoretical form ulation of the problem of making 

optim al hedging and financing decisions and examine performance of four organiza

tional programs th a t a  multidivisional corporation can  adopt to solve the problem.

2.3 Theoretical M odel and Analysis

In the first subsection, we study a centralization program  for risk m anagem ent 

under the ideal assumption th a t the corporate headquarters has perfect information 

regarding corporate operating income u  and corporate optimal investment £. We
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then  exam ine three other practical risk m anagem ent programs in  following subsec

tions and  com pare them  w ith th e  ideal centralization program.

2 .3 .1  Id e a l C en tra liza tion

In th is  subsection, we make the  ideal assum ption th a t the corporate headquarters 

knows corporate  operating income u  and  corporate optimal investm ent £. The 

corporation’s objective is to  maximize its  expected net present value.

The corporation’s value a t tim e 1 has four components: corporate operating 

income, cash flow resulting from hedging transactions, expenses of acquiring external 

fund, an d  expected gain of investm ent m ade a t tim e 1 . Suppose th e  world is in s ta te  

k a t tim e 1. The first component is operating  income, equal to  Uk- To explicitly 

write down the second component, let qbk and qf be quantities of the  A:th Arrow 

security th e  corporation buys and  sells in the financial market a t tim e 0 , respectively. 

Both q% an d  qk take only nonnegative values. By definition of Arrow security, the 

corporation’s buying and selling positions in the &th Arrow security generates cash 

flow of qk — q% in sta te  k  a t tim e 1. In addition, the second com ponent also includes 

Y^i=\{—biqi +  Siqf), where is w hat the  corporation pays a t time 0  for

buying A rrow  securities and J2iLi is w hat the corporation receives a t time 0 for 

selling A rrow  securities. The second component of the corporation’s net value is thus 

equal to  —q3k +  YliLi siqt +  91"“ hq*. Let zk be the am ount of external fund 

the corporation  acquires in s ta te  k  and cjt be the un it cost of external fund in s ta te  

k. The third component is then  equal to  ckzk . Suppose th a t the corporation makes 

optim al investm ent in s ta te  k. Let r k be the expected discounted cash flow from 

the future beyond time 1  th a t is a  result of one un it investment made in s ta te  k  

a t time 1. Then the fourth component, the expected gain of investm ent made a t 

time 1, is equal to r fc£fc. P u ttin g  the  four com ponents together, we know th a t the 

corporation’s value in s ta te  k  is equal to
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uk + qbk -  52 bk<ll ~  + 52 s*<lk -  °kzk + rk£k . (2.1)
N  N

E 6 * ? £ - ? 2  +  Ei=l i=l

Let qb =  (qb, qbN)' be the  vector containing quantities of Arrow secu

rities the corporation  buys for every s ta te , q3 =  (gf, q |, - - •, qsN)' be the vector 

containing quantities of Arrow securities the  corporation sells for every s ta te , and 

z  =  (zi, z2, ■ ■ ■, zNy  be the vector containing external fund the corporation acquires 

for every s ta te . The corporation’s expected  net present value a t tim e 0 is a  function 

of q b, q 3, and  z .  Let / ( q 6, q3, z )  be th e  corporation’s expected net present value a t 

tim e 0. By talcing expectation of (2.1) under the  risk neutral probability distribution, 

we obtain  / ( q 6, q3, z )  as follows

N

/(q\qa,*) =
fc=i

^  -  52 bi<ii -  + 52 -  °kZk + rfcffc
i=i i=i

N  N  f  N  \  /  N  \

= f2Pkuk + J2pkqbk -  ( 52?*.) (5 -̂?*6)k=l k= 1 \Jt=l / \t'=l /
N  /  N  \  /  N  \  N  N

-  52 Pkqi +  52 Pk 1152 s iq° -  52 Pkckz k + 52k= 1 \k=l / \i=l / Jt=l fc=l
N  N

= E(u) + 52 PkTk̂ k — 52 [(6fc ~  Pk)qi + (Pfc — Sk)qi + PkCkZk] (2.2)
k=l k=1

To maximize its expected net present value, the corporation solves the following 

optim ization problem,

m axim ize f ( q b, q3, z)  (2.3a)

subject to

N  N

ui + qi -  52 -  9i + 52 ^ &
i=i 1 = 1

iV w
u 2  +  ? 2  —  5 2  biCt i  ~  ? 2  +  5 2  s iq' i  +  Z2 >  &  

i=1 «=1
(2.3b)
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N  N

u n  +  Qm ~  $3 — On  +  Si<Ji + zn  >  €n
1 = 1  i= 1

/ ( g 6, gs, *) >  E (u ) (2.3c)

q b >  0, g* >  0, z > 0 . (2.3d)

C onstraint (2.3b) is a  set of budget constraints, one for each s ta te  of the world at 

tim e 1. Take the budget constraint of s ta te  1  as an  example. O n the  left hand side is 

the  to ta l amount of disposable fund the corporation has in s ta te  1 , which is the sum 

of operating income, cash flow from hedging positions, and external fund. On the 

right hand side is th e  corporate optim al investm ent. The constraint requires th a t the 

left hand side be greater than  or equal to the  right hand side so th a t  the corporation 

has enough disposable fund to make optim al investment in s ta te  1 . C onstraint (2.3c) 

is a  rational constraint, where E (u) is the expected value of the corporate operating 

income. If the corporation does not make any investment at tim e 1, its expected value 

will be E (u ) . 4  We call E (u ) the reservation value of the corporation. The rational 

constraint (2.3c) em phasizes th a t a rational corporation does no t take extra effort to 

reduce its value. C onstrain t (2.3d) requires all choice variables to  be nonnegative.

Since the objective function and all constraints are linear functions of choice 

variables, the optim ization problem (2.3) is a  linear program m ing problem. Let 

£2 =  {(qb,qs,z) : g 6 ,<jr*,and z  satisfy constraints (2.3b), (2.3c) and  (2.3d).} be the 

collection of feasible solutions. It is easy to verify th a t constraint (2.3c) is equivalent 

to  the following inequality
N ‘ N

] £  [(6fc -  Pk)qbk +  (Pfc -  s k)q 3k +  PkCkz k] <  Pkr k€k ■ (2.4)
Jb=l Jt=l

Because bk > pk > s k >  0 and cjt >  0, choice variables qb, qs, and z  are bounded from 

above according to inequality (2.4). In addition, since qb, qs, and z  are nonnegative 

the feasible solution space Q is thus bounded. Furthermore, equation (2.2) shows

4If the corporation does not make any investment at time 1, it will not take any hedging position 
at tim e 0 nor acquire any external fund at time 1.
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th a t the objective function is decreasing  in choice variables (qb,q a, z ) ,  and  th a t 

the m aximum value of the o b jec tiv e  function is equal to  E (tt) +  YiiLiPk^k^k  when 

qb =  q3 =  z  =  0 . But the so lu tion  q b =  qs =  z  =  0 is no t necessarily a  feasible 

solution because it may not satisfy co n stra in t (2.3b).

In this paper, we assume th a t  Cl is not empty. T he assum ption m eans th a t the 

corporation can do better w ith investing  at time 1 th an  w ithout. I t  is well known 

th a t when the feasible solution sp ace  is bounded and  n o t empty, th ere  exists an 

optim al feasible solution to a  linear p ro g ramming problem. T he following proposition 

gives certain  properties of an o p tim a l feasible solution to  the  linear program m ing 

problem (2.3).

P r o p o sitio n  2.1 Let (q*b, q*s, z*) =  ( q f ,  • • • ,? # ;  q{s, ■ • • , q„; z{, - • • z*N ) be an opti

mal feasible solution. The optim al feasib le solution has the following properties.

1. The optimal hedging positions q ^ f and q*k3 can no t be both positive in  any state k .

2. I f  qtf > 0  or z*k >  0, then the bsidget constraint o f s ta te  k in  (2.3b) is binding.

3- I f  Ik* >  0  fo r a certain state Jk, then there m ust exist another s ta te  I whose 

budget constraint is binding.

4. I f  >  0 fo r  a certain state k a n d  the inequality, PkCk > {pi — s f j / s i ,  holds for  

any state I — 1, 2, • • •, N , then call budget constraints is binding.

5. I f  none o f the N  budget constra in ts  is binding, then q*k =  q*k =  z k =  0 fo r  all 

k = 1 ,2 ,••■,1V.

R e m a rk  2 . 1  The first property suggests  th a t, to  maximize its expected n e t present 

value, the corporation either buys or sells Arrow security of a  particu lar s ta te , but 

does not engage in both  at the sam e tim e . Buying one A:th Arrow security effectively 

shifts operating income from all o th e r- states to sta te  k , while selling one /cth Arrow
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security effectively d istributes operating  income of s ta te  k  evenly to  all s ta tes. Since 

b o th  buying and selling incur transaction  cost, it is not optim al for th e  corporation 

to  increase its disposable fund of s ta te  k  by buying the A:th Arrow security  and then 

shift fund from s ta te  k to some deficit s ta tes by selling the  k th  Arrow security. The 

second property suggests th a t the corporation buys the fcth Arrow security  or acquires 

external fund in s ta te  k  only when it could not meet the optim al investm ent of state 

k  otherwise. T he third property suggests th a t the corporation sells th e  fcth Arrow 

security only when it  could not m eet the  optim al investm ent in some o ther states 

otherwise. In the condition of the fourth  property, pkCk is the cost of one unit  external 

fund acquired in s ta te  A:, and (jpi — s{) / si measures the proportion of transaction  cost 

incurred in selling one Zth Arrow security  to  the sell price. Since the cost of external 

fund is usually m uch higher th an  transaction  cost, the  condition is satisfied for any 

s ta te  k  and I. The fourth  property implies th a t, under the condition th a t  the  cost of 

external fund is higher than  the cost of shifting operating income across sta tes via 

Arrow securities, the  corporation will acquire external fund only when its operating 

income is not enough to  meet its op tim al investments no m atte r how th e  corporation 

shifts operating income.

P r o o f  o f  P r o p o s itio n  2.1:

Let w* be the corporation’s disposable fund in s ta te  t  under the op tim al feasible 

solution (q*b, q*s, z*), i.e.,

w-t  =  « , + q ?  -  e  b i q f  -  + E  s i q r  +  z ; .
Z = 1 t’=l

Let /(q * 6, q *a, z *) be the corporation’s optim al expected net present value.

To prove the first property, suppose q£a > 0 for s ta te  k. We will show th a t if 

qlb > 0 then  the solution is not optim al. Suppose qlb >  0. Let A =  min{g£ai <ZJt6}i 

then  A >  0. If the corporation decreases b o th  q™ and by A then  the  corporation’s

disposable fund in any s ta te  t becomes w* +  (6 *, — s*.) A and the corporation expected
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net present value is equal to f(q * b,q*3,z*) +  (bk — sk)A .  Since bk > sk, we thus 

ob tain  a bette r solution by substituting qks — A  for qk3 and qkb — A for qkb. This 

contradicts to the assum ption  th a t qIs and q£b are optim al. Therefore q£ 6 =  0 when 

ql3 >  0. I t also im plies th a t  q*k =  0 when q*k >  0. We thus prove th a t q*̂ and qks 

can not both be positive in any state  k.

Next, we shall prove the second property. Suppose qkb >  0 for any s ta te  

k. Suppose the budget constraint of state k  is no t binding, i.e., > £k. Let

A =  (£* — i£/£)/2, th e n  A  >  0. By substitu ting qlb — A  for qlb in the optim al 

solution, we reduce th e  disposable fund of s ta te  k  from wk to wk — ( 1  — bk) A  and 

increase the disposable fund of any other state t  from  w* to  w* + bkA. Consequently, 

budget constraints o f  all s ta tes  remain satisfied. More im portantly, the substitu tion 

increases the objective function by bkA. It means th a t  the substitution results in a 

b e tte r solution, which contradicts to the assum ption th a t qlb is optimal. Therefore 

the budget constrain t of s ta te  k  is binding. Similarly, we can prove th a t if zk >  0 

then  the  budget constra in t of s ta te  k  is binding.

Next, we shall prove th e  th ird  property. Suppose qk3 > 0 for any sta te  k. We want 

to show th a t there m ust be another sta te  whose budget constraint is binding. Suppose 

budget constraints o f  all s ta tes  other than sta te  k  axe not binding, i.e., vuf >  £/ for 

any s ta te  I where I 7  ̂ k. Let A =  min{tyf — £/ : I =  1,2, • • •, AT, and I 7  ̂ k}, then 

A >  0. By su bstitu ting  ql* — A for q^s in the optim al solution, we increase the 

disposable fund of s ta te  k  from to +  (1 — s k)A  and decrease the disposable 

fund of any other s ta te  t  from w * to iy£* +sjtA . By definition of A, budget constraints 

of all states rem ain satisfied. More importantly, the  substitu tion also increases the 

objective function by s kA. It means th a t the substitu tion  results in a  better solution, 

which contradicts to  th e  assum ption th a t qka is optim al. Therefore there must exist 

a  s ta te  whose budget constrain t is binding.

Next, we shall prove the  fourth property. Suppose zk >  0 for state k. According to  

the second property, th e  budget constraint of s ta te  k  is binding. Suppose the budget
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constraint of another s ta te  I is not binding, i.e., w* > £*. Let A =  (w f — & )/2, 

then A >  0. We then substitu te q*s 4- A for qf3 and zk — s iA  for z£ in the optim al 

solution. W ith  the substitution, the disposable fund of s ta te  k  does not change, 

the disposable fund of s ta te  I is still greater than  £*, and  the disposable fund of 

any other s ta te  increases by S[A.  Consequently, budget constraints are still satisfied 

for all states. The value of the objective function a fte r the substitution is equal

f(Q*biQ*Si z *) +  PkCkSiA — {pi — s i)A , where pkcks iA  is due to  change in  zk and 

—(p; — si)A  is due to change in q{3. Under the assum ption th a t pkck > (pk — sk) /s i,  

the substitu tion  results in a be tte r solution, which contradicts to the assum ption 

th a t {q*b, q*3-, z*) is optimal. Therefore the budget constrain t of state I is binding.

At last, the  fifth property can be derived from the second and the third properties. 

If none of the budget constraint is binding, then we know tha t, for any s ta te  fc, 

qlb = z£ =  0  according to the th ird  property and ql3 =  0  according to the  second 

property. □

In sum m ary of this section, we set up a theoretical m odel in which the corporate 

headquarters solves the linear programming problem (2.3) to obtain optim al hedging 

and financing decisions, assum ing th a t headquarters knows corporate operating 

income u  and  corporate optim al investment £. P roperties of optimal decisions 

are studied and summarized in Proposition (2.1). In the  following subsections, we 

discuss three risk m anagem ent programs th a t operate under the reality th a t each 

division knows its own operating income and optim al investm ent while no one in the 

corporation has perfect inform ation about corporate operating  income and corporate 

optimal investment.

2.3.2 U n co o rd in a ted  D ecen tra liza tion

In this subsection, we study an uncoordinated decentralization program for risk 

management. Under such a  program , divisions make hedging and financing decisions
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individually. E ach  division solves its own optim ization problem as if it is a  stand-alone 

corporation.

Take division j  as an example. Let q b- =  {qbx, qb2, • • -, qbN)' be the vector 

containing quan tities of Arrow securities division j  buys for every state, =  

(qjt , qj2, • ■ ■, <tjNY be  the vector containing quantities of Arrow securities division 

j  sells for every s ta te , and zy =  (zyi, zy2 , , zj n )' be the vector containing external 

fund division j  acquires for every s ta te . Then the expected net present value 

of division j  a t  tim e 0 , f j (q b, <Zy, z } ), has the following expression, similar to 

equation (2 .2 ),

N  N

/ / ( « />  9y, z i) =  E ( v y ) +  PkTkVjk -  [ (6* -  Pk)$k +  ( P k -  sk)q% +  PkCkzjk\ (2 .5 )
1 -1  fc=l

where Vj =  (uyi, Vj2, • • •, VjN)' is division j ’s operating income a t time 1 , and

rjj =  (rjji, r]j2 , • • • , V jnY  is division j ’s op tim al investment a t tim e 1. Note th a t

we assume the bu y  price bk and the sell price s k of Arrow securities, the unit cost of

external fund ck, an d  the  unit gain of investm ent rk are the sam e to all divisions as 

well as the corporation.

Division j  solves the following linear program m ing problem  to maximize its 

expected net p resent value,

maximize /y (<Zy, <Zy, Zj) (2 .6 a)

subject to

N  N

vn  +  9/1 -  brfji -  9/1 +  s *9/i +  zn  >  Vji
i'=i i= i

AT N
^/2 +  9y2 ~  Z )  6«’9yi -  9y2 +  H  ^ - +  zy2 >  rjj 2  

»=i 1 = 1

: (2 .6 b)
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N N
vjN  + qhjN  — 53 btfji ~  Ij'N + 53 SiQji + ZiN > VjN

i= l  t= l

f j{ q bp  9y, z j)  >  E (Vj) (2.6c)

Qj > 0 , qsj  >  0 , Zj >  0  . (2 .6 d)

Let CLj =  {{qbj , q Sj ,Z j )  : <Zy, <Zy, and Zj satisfy constraints (2.6b), (2.6c) and  (2.6d)} 

be the  feasible solution space to the optim ization  problem of division j .  We 

assume th a t the feasible solution space fiy is not empty for any division j  with 

j  =  1 ,2 , • - •, M . T he assum ption means th a t  all divisions have profitable future 

investm ent opportunities on their own. N onprofitable divisions have been cu t out 

from the corporation.

T he following proposition compares the uncoordinated decentralization program  

with the ideal centralization program.

P r o p o s itio n  2.2 Let ( q f ,  q*j3, z*) be an optim al solution to the optim ization prob

lem (2.6) o f division j  fo r  j  =  1, 2, • • • , M , and (q*b, q*s, z*) be an optim al solution

to the optimization problem (2.3) o f the corporation under the ideal centralization  

program. We then have

M
£  f A l f ,  9",  *}) <  f ( q ' b, q", Z-) .
J= 1

P r o o f  o f  P ro p o sitio n  2.2:

Note th a t corporate operating  income is th e  sum of divisional operating  income, 

i.e., u  = v ji and corporate investment is the  sum  of divisional investm ent, i.e., 

£  =  J2jLi Vj- We then have the following results

M 

j=[
M r  N N

= 5Z ) E ( v j )  + 51 P k r k V j k  -  53 [(6* -  V k) q * j l  +  ( P k -  sk)q}*k + Pk C kZ * k  
y=i I fc=i fc=i
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M  N  M  N  M

=  E Q Z  v i)  +  £ (P fcr * £  Vjk) -  £  £  [(&Jt ~  +  (Pfc “  <?fc)?yfc +  PfcCfcẐ fc]y=i fc=i y=i fc=i y=i

=  E (u ) +  Pfcrjfcfifc -  J 2
fc=i fc=i

M  M  M

=  / ( E t f ^ r . E * ; ) -,=i ,=i j»i

M  M M

(bk -  Pk) J2  <tfc +  (Pfc -  **) D  ?yfc +  P*c* J L  zh  
y=i y= i y= i

I t  is easy to  verify th a t (ICyLi QyS S y l i  9y*> )Cyli z y) satisfies constraints (2.3b),

(2.3c), and (2.3d). Therefore ( £ / i i  q f ,  52 /ii <ZySi Z )/ii * /) is a- feasible solution

to the  optim ization problem  (2.3). Since (q*b, q*s, z*) is the optim al solution to

problem  (2.3), we obtain
M  M  M  M

E  f M f ,  9 * > )  =  / ( E  « ? .  E  9 " .  E z i ) s  9 " ,  *•) •
y=i y=i y=i y=i

□
Proposition 2.2 shows th a t  the optim al corporate expected net present value under 

the uncoordinated decentralization program  is no more than  th a t under the  ideal cen

tra liza tion  program. From the proof of the proposition, (J2yLi q*b, Z^yli q*jS■> X)yii z j)  

is the sum of all divisions’ optim al hedging and  financing positions under the 

uncoordinated decentralization program. A necessary condition for the uncoordi

na ted  decentralization program  to achieve the same maximum value as the ideal 

centralization program is th a t  (J2yLi <Zy6> X)yii <Zys> X)yli z *) satisfies all properties in 

Proposition 2.1. Take P roperty  1  in Proposition 2.1 as an example. P roperty  1 

dem ands th a t for any s ta te  k , if J2jLi <ijk > 0 > then  Y,jLi <?/£ =  0 , and vice versa. 

However, since divisions’ operating incomes are not correlated w ith each other in 

general, it is usually the case th a t, in any s ta te  of the world, some divisions are in 

surplus while others are in deficit. As a result, ]Cyli Qjt and Y,jLi Qjk are usually both  

positive for many states of the  world, which means th a t the corporation as a whole 

buys more Arrow securities th an  necessary. T h a t is, the corporation overhedges. 

Since the corporation pays transaction  cost for each Arrow security it buys or sells, 

overhedging reduces the corporation’s value due to  excessive transaction costs.
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2 .3 .3  R eal-W orld  C en tra liza tion

In Section 2.3.1, we study a  centralized risk m anagem ent p rogram  under the 

ideal assum ption th a t the corporate headquarters  knows exact figures of corporate 

operating income and corporate optim al investm ent. In reality, headquarters does 

not have first-hand knowledge of these figures and relies on divisions’ reports to  

estim ate them. T he estim ated figures can be im precise for three reasons.

First, since headquarters is able to handle only a limited am ount of information, 

it generally asks each division to report aggregate figures of its opera ting  income and 

optim al investment. The restriction on the am o u n t of inform ation being transfered 

leads to  loss of information, which then  resu lts  in bias in estim ated  figures a t 

headquarters.

Secondly, under central decision making, divisions have disincentives to collect 

information. W hen there is no direct rew ard  for reporting correct information 

under centralization, it is not beneficial for divisions to engage in costly  information 

collection. Instead, divisions tend to  report h a n d y  figures, which m ay  no t be accurate 

a t all.

Thirdly, even if divisions have accurate inform ation, they have incentives to report 

biased figures. Divisions are m anaged by econom ic agents who m axim ize their own 

benefits. Since the reported figures determ ine how much contribution each division 

makes to  corporate operating income and how m uch fund each division gets for future 

investment, divisions have incentives to  re p o rt biased figures in th e ir  favor. In the 

following, we analyze how imprecise estim ates adfect performance of th e  centralization 

program.

Let u  = (ui, v.2 , ■ • •, % ) ' be h ead q u arte rs’ estimates of co rporate  operating 

income for every' s ta te  of the world, and £ =  (fi, <f2, • • •, |jv ) ' be  headquarters’ 

estim ates of optim al investment for every s ta te  of the world. T h e  corporation’s 

expected net present value with imprecise estim ates, / ( q 6, q \  z ) ,  is then  equal to
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N  _  N

f { q b, q s, z)  =  E (u )  +  Y  PkTkCk -  Y  [ ( &fc -  +  (p* -  s k)?k +  PkCkZk\ , (2.7)
Jfc=l fc=l

where qb =  (g£, , <7^-)' is the vector containing quantities of state-contingent

Arrow securities th e  corporation buys a t tim e 0, qs =  • • , qaN )' is the vector

containing quantities of state-contingent Arrow seciuities th e  corporation sells at 

tim e 0 , and z  =  ( z i , z 2, ■ ■ ■, z n )' is the vector containing state-contingent external 

fund the corporation acquires a t tim e 1 .

To maximize its  expected net present value, the corporation solves the following 

optim ization problem,

maximize f ( q b, qs , z )  (2 .8 a)

subject to

~  Y  ~  9 i  +  Y  s r t i  +  ^  l i
t=i x=i

V  N

U2 +  & - Y bi $  ~ &  +  Y  S t f i  + * 2  ^  &
i= 1 t= l

i (2 .8 b)
N  N

U N  +  q?N -  Y  b i £  —  On  +  Y  S t f i
j = 1  i= l

f ( q b, q \ z ) > E ( u )  (2.8c)

qb > 0 , q3 >  0 , z  >  0  . (2 .8 d)

The above optim ization  problem (2.8) is the same as th e  linear programming

problem (2.3) except th a t  the  param eters u  and £ used in problem  (2.8) are estimates

of the param eters u  and £ used in problem  (2.3). Let (q*b,q*s , z*) be an optimal 

solution to  problem  (2.8) and  (q*b,q*s , z *) be an optim al solution to  problem (2.3). 

Below we discuss to w hat extent bias in the  estim ated param eters, u  and £, affects 

the corporation’s hedging and financing decisions.

W hen the corporation has sufficient operating income to  m eet its optim al invest

m ent in every s ta te  of the world, small bias in estim ates u  and  £  does not have any
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im pact. This is because when operating income is sufficient in every sta te , i.e. Uk >  

for all k =  1 , 2, • • •, N ,  th e  optim al solution to problem  (2.3) is q*b =  q*s =  z* =  0. 

As long as the estim ates u  and £ satisfy for all fc =  1, 2, • • -, iV, the  optim al

solution to  problem (2 .8 ) will be the same q*b = q*s =  z* =  0 .

However, when (q *b, q*s, z*) is not zero, estim ation error in u  and £  reduces the 

corporation’s value. According to Property 5 in P roposition 2.1, when (q*b, q*3, z*) 

is no t zero, some inequality constraints in (2.8b) are binding. Suppose the  constraint 

o f s ta te  I is binding, i.e.,

^i + Qib biq-b — qf + Si<£3 +  z \ = £/ .
»=i »=i

If & — ui < & — ui, then  the corporation underhedges in sta te  1. This is because 

when s ta te  I occurs a t tim e 1 , the corporation’s disposable fund is equal to  ui +  q*b — 

E f c i  biQib ~  +  J2iLi siQiS +  which is less th an  th e  optim al investment £j. This

forces the corporation to acquire additional external fund a t time 1 . It becomes even 

worse if qf3 > 0 , because the corporation then has to  acquire external fund to pay 

holders of the Ith  Arrow securities it has sold a t tim e 0. Underhedging reduces the 

corporation’s value because of the high cost of obtain ing external fund a t  time 1 .

O n the other hand, if — ui >  — ui, then the corporation overhedges in s ta te

I, which means th a t the corporation has more disposable fund than it needs for 

investm ent. The corporation suffers loss in value if qfb > 0, because the corporation 

has bought more Arrow securities for state I than  necessary. Since the corporation 

takes a  chaxge in the am ount of transaction cost for each Arrow security it buys, 

overhedging reduces the corporation’s value by excessive transaction cost.

A lthough loss in the corporation’s value due to  bias in estim ated operating 

incom e and optimal investm ent can not be w ritten  out in an explicit formula, it 

can  be dem onstrated numerically. Empirical evidence presented in Berger and 

Ofek (1994) shows th a t the  m arket value of a multidivisional corporation appears 

to  be approximately 13-15% less than  the sum of its  divisions valued separately.
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They argue th a t this diversification discount results from m isallocation of capital 

and inefficient cross-subsidies between divisions in the multidivisional corporation. 

Our analysis suggests th a t the existence of a  diversification discount m ay be due 

to bias in information th a t the corporate headquarters uses in making centralized 

decisions. Even though headquarters has no intention for cross-subsidization of 

poorly-performing divisions by better-perform ing divisions, inefficient cross-subsidies 

take place due to inaccurate inputs to headquarters’ decision-making process.

2 .3 .4  C oord in ated  D ecen tra liza tion

In Section 2.3.2, an uncoordinated decentralization is discussed, under which 

each division acts as a stand-alone firm who deals only with external financial 

institu tions for hedging and financing transactions, and the corporate headquarters 

offers no help in divisions’ decision-making. As a  result, divisions do not benefit 

from potential offsetting cash flows in other peer divisions, and the corporation as 

a whole overhedges. In this subsection, we propose a  new kind of decentralized 

risk m anagem ent program. In the  new program, divisions make their own hedging 

and financing decisions individually just like in the uncoordinated decentralization 

program , bu t headquarters organizes an internal m arket th a t helps divisions exploit 

offsetting cash flows in peer divisions.

T he reason why an internal m arket enables divisions to exploit offsetting cash 

flows in peer divisions is th a t there is no transaction  cost for transactions on the 

internal m arket. A m ajor component of transaction  costs on external financial 

m arkets is the cost of credit risk. External financial institutions are in general 

suspicious to a firm’s report on its financial streng th  and are afraid th a t the firm 

defaults financial contracts they take part in. To protect themselves from default 

risk, they usually charge a prem ium  over fair price of any financial contract. The 

prem ium  is the cost of credit risk. W ithin a multidivisional corporation, divisions are 

bound to  be honest with each o ther by their desire to  stay under the sam e roof and
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th e  corporate headquarters serves as a  clearinghouse in th e  in ternal m arket, which 

effectively elim inates default risk of in ternal transactions.

To facilitate internal transactions, th e  corporate headquarters sets internal prices 

a f te r  investigating prices on external financial markets. Let 5k be the internal price 

of th e  A:th Arrow security for k  =  1, 2, • • •, N . Then the in ternal price ought to 

be chosen such th a t bk > 5k > Pk > $k > 0 , where bk is the external buy price, 

Sk is the external sell price, and pk is the  risk neutral equilibrium  price. Divisions 

w ho wants to buy Arrow securities pay lower internal price 5k th an  the external buy 

p rice  bk, and divisions who wants to  sell receives higher in ternal price 5k th an  the 

ex te rn a l sell price Sk■ Therefore, bo th  buying divisions and selling divisions will look 

for counterparties in internal m arket before in external financial m arkets.

T he sequence of actions th a t divisions take to make hedging and financing 

decisions under the coordinated decentralization program  is as follows. Take division 

;  a s  an  example. At tim e 0, division j  solves the following linear p ro g ra m m in g  

problem ,

maximize f j ( q b, qSj ,  Zj) (2.9a)

sub ject to

+  9yi ~  H  bijji -  qan  + + ZH >  Vji
i= 1 i=l
N  N

Vj2  +  <1% -  H  bidji -  q*2 + s i4ji +  ZP- ^  *7j 2

i= l 1=1

AT N

(2.9b)

V jN  + q bj N  -  J 2  h i ^ j i  - Q j-n  +  Y I  s ^ ' h  + z i N   ̂ V j*r
i=i i=i

.6/y (9 y , 9y i Zj) > E(t»y) (2.9c)

qbj  > 0 ,  q aj >  0, Z j>  0  . (2.9d)

T h is  optim ization problem is the same as the optim ization problem  (2.6) division 

j  w ould solve under the uncoordinated decentralization program . Let {q*b, q y , z*)
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be an  optim al solution division j  obtains by solving the  above linear program m ing 

problem . Division j  then  posts a  request in the in ternal m arket to buy Arrow 

securities in  quantities of q*-b and  sell Arrow securities in quantities of q*3 - Once 

all divisions post their desired quantities, a schedule of supply and dem and of each 

Arrow security becomes to  exist in the internal m arket. Since there are N  Arrow 

securities, there will be N  schedules of supply and dem and. Divisions clear the 

in ternal m arket according to  these schedules.

In case th a t supply and dem and do not m atch exactly on a schedule, divisions 

follow a  pro rata rule to clear th e  internal m arket. Take the schedule of the A:th Arrow 

security  as an  example. Suppose th a t  supply and dem and are equal to E y l i  q*jk and 

E y l i  respectively, where q*-% and  q*bk are division j ’s optim al selling and buying 

positions in  the A:th Arrow security, respectively. Let p be the  ratio of supply to 

dem and. W hen supply is less th an  demand, i.e., p <  1, the  pro rata rule specifies 

th a t each buying division gets only a  proportion of w hat it desires. For example, 

if division j  is in dem and of th e  A:th Arrow security, i.e., q^k > 0, then division j  

gets only pq*-k from the in ternal m arket . 5  W hen supply is more than  dem and, i.e., 

rho >  1 , the  pro rata rule specifies th a t each selling division sells only a proportion 

of w hat it can provide. For exam ple, if division j  wants to sell q*k > 0 ,  then division 

j  sells only q*lf p in the internal m arket.

Once the internal m arket clears, let q - = <7/ 2 , • • •, 9 jv }  be the position

division j  takes in each Arrow security in the in ternal m arket. If qjk >  0, division 

j  buys the  /cth Arrow security in quantity of qjk. If qjk <  0, division j  sells the 

fcth Arrow security in quantity  of —qjk- Since cash flows from these internal Arrow 

securities changes division j ’s expected net present value and  the distribution of 

in ternal fund a t time 1 , division j  needs to solve a second optim ization problem  to 

com pute additional hedging and  financing it has to ob ta in  from external financial 

m arkets.

5According to Property 1 In Proposition 2.1, q~-k =  0 when q~-k >  0.
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Let (qb, <7y, Zj) be additional hedging and financing position division j  takes in 

external financial m arkets. Then division j’’s disposable fund in s ta te  k  is equal to

N  N  N

Vjk + qjk -  53 5m  + <fjk -  53 -  <fjk + E  + zik > Vjk ,1=1 1=1 1=1
and division j ’s value in s ta te  k  is equal to

N  N  N

V j k  +  qjk -  53 S iO j i  +  V jk  -  53 6.-^,- ~  9/* +  53 s ^ j i  ~  c k z j k  +  *V7/Jfe ,
1 = 1  i=i i=i

where Vjk is division j ’s operating income, qjk — Z)£Li SiQji represents cash flow from 

division j ’s positions in internal Arrow securities, qbj k — biq)i — q3j k +  H iLi 5 i9y,- 

represents cash flow from division j’’s positions in external Arrow securities, ckZjk is 

expenses of acquiring external frmd, and rkqjk is expected gain of investm ent made 

in s ta te  k  a t tim e 1 . By taking expectation of division j '’s value a t tim e 1 under the 

risk neutral probability distribution, we can write division j ’s expected net present 

value as follows

Qj, Zj) =  (2 .1 0 )
M  N  N

E(vj) “  53 ~ Pk)qjk + 53 PkTkVjk ~ 53 [(6* “ Pk)qbj k + (Pfc -  s h)qjk + PkCkZjk] .fc=i fc=i it=i
The second optim ization problem  is then form ulated as follows

maximize f j ( q b, q j , Z j )  (2 .1 1 a)

subject to

N  N  N

v ji + m  -  53 s# j i  +  -  53 b'Qji -  ?yi + 53 s*q'ji + zn  > mi=i i=i 1 = 1

N  N  N

VjZ + qj2 -  53 S&3i + ?/2 -  53 hidji ~  $ 2  + 13 s ^ i i  + Zi2 > Vj2t'=l i=l i=l
(2.11b)
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N  N  N

V j N  + q j N  ~  Y 1  5i$ ii + f j N  ~  Y  ~  <fjN +  Y  S i<lji +  Zj N  >  V j N
*=1 i= 1 i= l

£ (« * »  9 y, Z j) >  E (« y )  (2.11c)

q ) >  0, <£>0, zy > 0 . (2.lid)

As the last step of the decision-making process, divisions take optim al hedging 

and  financing positions given by the second optim ization  w ith external financial 

in stitu tions . 6 Even though divisions might still be able to  find in ternal offsetting 

supply or demand w ith a second round of internal trad ing , the potential gain would 

be sm all because m ost offsetting has occurred in  th e  first round of in ternal trading.

In the  following, we com pare the coordinated decentralization program  w ith the 

uncoordinated decentralization program  and the real-world centralization program . 

T he coordinated decentralization program  is evidently b e tte r  th an  the uncoordinated 

decentralization program. U nder the coordinated decentralization p r o g r a m , divisions 

have opportunity  to trade Arrow securities in the in ternal m arket. For divisions who 

wants to  sell Arrow security, in ternal trades increase th e ir value because they  receive 

higher internal price than  external price. For divisions who wants to  buy Arrow 

security, internal trades also increase their value because they pay lower internal 

price th an  external price. T he internal m arket helps all divisions achieve higher 

values th an  under the uncoordinated decentralization program .

T he coordinated decentralization program is b e tte r  th an  the real-world central

ization program  for two reasons. First, the coordinated decentralization program  

avoids value reduction caused by imprecise inform ation. Under the coordinated 

decentralization program, divisions make their hedging and financing decisions based 

on first-hand knowledge. There is no loss of inform ation during transfer and 

no incentives to use biased estim ates in solving the  optim ization problem . In

6T he corporation can take advantage o f the scale of econom y in transaction costs on external 
financial markets by asking divisions to report their external hedging and financing positions to 
headquarters and letting headquarters to make transactions w ith  external financial institutions on 
a larger scale.
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stead, divisions axe m otivated to use their b es t knowledge in m aking decisions. 

Secondly, the coordinated decentralization program  prevents cross-subsidization of 

poorly-performing divisions by better-perform ing divisions. Under the real-world 

centralization program , the  corporate headquarters pools operating incom e from 

all divisions, makes firm-wide hedging and financing decisions, and then  allocates 

capital to divisions for investm ent purpose. D uring the process, inefficient cross- 

subsidization occurs as an  inevitable consequence of imprecise inform ation or other 

agency issues. On the  contrary, divisions rem ain to  be independent profit centers 

under the coordinated decentralization program . Transfer of internal fund between 

divisions is accomplished through a m arket m echanism , which benefits givers of 

in ternal fund and costs receivers. While better-perform ing divisions afford to  acquire 

m ore capital in bo th  in ternal and external m arkets, poorly-performing divisions are 

prevented from getting  excessive capital by cost in b o th  markets. The coordinated 

decentralization program  creates value for the corporation by the am ount th a t the 

inefficient cross-subsidization destroys.

2.4 Summary and Discussion

We set up a theoretical framework to  analyze the  problem  of designing a risk 

m anagem ent program  for a m ultidivisional corporation. U nder the framework, the 

corporation uses risk m anagem ent not only to  avoid financial distress b u t also to 

secure financing for fu ture investments. It solves a  linear programming problem  to 

m ake optimal hedging and  external financing decisions.

Existing risk m anagem ent program s in large corporations fall into two categories. 

F irm s in the first category  let divisions make decisions a t the division level individ

ually  while firms in the  second category ask divisions to report inform ation to the 

corporate headquarters and let headquarters m ake decisions a t the corporate level.
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O ur analysis shows th a t  firms in the first category tends to overhedge while firms in 

the second category either underhedge or overhedge.

We propose a th ird  kind of risk m anagem ent program. We suggest th a t corpora

tions organize an in ternal m arket for divisions to  trade state-contingent claims amoug 

themselves. We show th a t  such a coordinated decentralization program  with internal 

market does b e tte r th a n  existing ones in maximizing the expected net present value 

of the whole corporation.

The concept of in ternal risk m anagem ent market is practically  implementable. 

Recently, the oil g ian t BP Amoco PLC in Naperville, 111. has created an internal 

market for their divisions to trade perm its to emit the greenhouse gases (Ginsburg 

(2000)). Since m any large corporations have already built o r are building internal 

com puter systems to  enable direct com m unication among divisions, internal risk 

management m arket can be implemented w ithout much ex tra  complications or cost.

The theoretical m odel we develop in this paper has o th er applications. I t is 

realistic enough th a t  m anagem ent can follow it to make real-world hedging and 

financing decisions. I t  also provides a framework under which management can 

compare organ iza tion a l program s based on simulations.
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